| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnfncnbd | ⊢ ( 𝑡  ∈  LinFn  →  ( 𝑡  ∈  ContFn  ↔  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) | 
						
							| 2 | 1 | pm5.32i | ⊢ ( ( 𝑡  ∈  LinFn  ∧  𝑡  ∈  ContFn )  ↔  ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) | 
						
							| 3 |  | elin | ⊢ ( 𝑡  ∈  ( LinFn  ∩  ContFn )  ↔  ( 𝑡  ∈  LinFn  ∧  𝑡  ∈  ContFn ) ) | 
						
							| 4 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 5 | 4 | mptex | ⊢ ( 𝑦  ∈   ℋ  ↦  ( 𝑦  ·ih  𝑥 ) )  ∈  V | 
						
							| 6 |  | df-bra | ⊢ bra  =  ( 𝑥  ∈   ℋ  ↦  ( 𝑦  ∈   ℋ  ↦  ( 𝑦  ·ih  𝑥 ) ) ) | 
						
							| 7 | 5 6 | fnmpti | ⊢ bra  Fn   ℋ | 
						
							| 8 |  | fvelrnb | ⊢ ( bra  Fn   ℋ  →  ( 𝑡  ∈  ran  bra  ↔  ∃ 𝑥  ∈   ℋ ( bra ‘ 𝑥 )  =  𝑡 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝑡  ∈  ran  bra  ↔  ∃ 𝑥  ∈   ℋ ( bra ‘ 𝑥 )  =  𝑡 ) | 
						
							| 10 |  | bralnfn | ⊢ ( 𝑥  ∈   ℋ  →  ( bra ‘ 𝑥 )  ∈  LinFn ) | 
						
							| 11 |  | brabn | ⊢ ( 𝑥  ∈   ℋ  →  ( normfn ‘ ( bra ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 12 | 10 11 | jca | ⊢ ( 𝑥  ∈   ℋ  →  ( ( bra ‘ 𝑥 )  ∈  LinFn  ∧  ( normfn ‘ ( bra ‘ 𝑥 ) )  ∈  ℝ ) ) | 
						
							| 13 |  | eleq1 | ⊢ ( ( bra ‘ 𝑥 )  =  𝑡  →  ( ( bra ‘ 𝑥 )  ∈  LinFn  ↔  𝑡  ∈  LinFn ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( ( bra ‘ 𝑥 )  =  𝑡  →  ( normfn ‘ ( bra ‘ 𝑥 ) )  =  ( normfn ‘ 𝑡 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( ( bra ‘ 𝑥 )  =  𝑡  →  ( ( normfn ‘ ( bra ‘ 𝑥 ) )  ∈  ℝ  ↔  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) | 
						
							| 16 | 13 15 | anbi12d | ⊢ ( ( bra ‘ 𝑥 )  =  𝑡  →  ( ( ( bra ‘ 𝑥 )  ∈  LinFn  ∧  ( normfn ‘ ( bra ‘ 𝑥 ) )  ∈  ℝ )  ↔  ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) ) | 
						
							| 17 | 12 16 | syl5ibcom | ⊢ ( 𝑥  ∈   ℋ  →  ( ( bra ‘ 𝑥 )  =  𝑡  →  ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) ) | 
						
							| 18 | 17 | rexlimiv | ⊢ ( ∃ 𝑥  ∈   ℋ ( bra ‘ 𝑥 )  =  𝑡  →  ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) | 
						
							| 19 |  | riesz1 | ⊢ ( 𝑡  ∈  LinFn  →  ( ( normfn ‘ 𝑡 )  ∈  ℝ  ↔  ∃ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 ) ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  →  ∃ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 ) ) | 
						
							| 21 |  | braval | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 ) ) | 
						
							| 22 |  | eqtr3 | ⊢ ( ( ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  ∧  ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 ) )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ( ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 24 | 21 23 | syl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 25 | 24 | ralimdva | ⊢ ( 𝑥  ∈   ℋ  →  ( ∀ 𝑦  ∈   ℋ ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  ∧  𝑥  ∈   ℋ )  →  ( ∀ 𝑦  ∈   ℋ ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 27 |  | brafn | ⊢ ( 𝑥  ∈   ℋ  →  ( bra ‘ 𝑥 ) :  ℋ ⟶ ℂ ) | 
						
							| 28 |  | lnfnf | ⊢ ( 𝑡  ∈  LinFn  →  𝑡 :  ℋ ⟶ ℂ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  →  𝑡 :  ℋ ⟶ ℂ ) | 
						
							| 30 |  | ffn | ⊢ ( ( bra ‘ 𝑥 ) :  ℋ ⟶ ℂ  →  ( bra ‘ 𝑥 )  Fn   ℋ ) | 
						
							| 31 |  | ffn | ⊢ ( 𝑡 :  ℋ ⟶ ℂ  →  𝑡  Fn   ℋ ) | 
						
							| 32 |  | eqfnfv | ⊢ ( ( ( bra ‘ 𝑥 )  Fn   ℋ  ∧  𝑡  Fn   ℋ )  →  ( ( bra ‘ 𝑥 )  =  𝑡  ↔  ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 33 | 30 31 32 | syl2an | ⊢ ( ( ( bra ‘ 𝑥 ) :  ℋ ⟶ ℂ  ∧  𝑡 :  ℋ ⟶ ℂ )  →  ( ( bra ‘ 𝑥 )  =  𝑡  ↔  ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 34 | 27 29 33 | syl2anr | ⊢ ( ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  ∧  𝑥  ∈   ℋ )  →  ( ( bra ‘ 𝑥 )  =  𝑡  ↔  ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 )  =  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 35 | 26 34 | sylibrd | ⊢ ( ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  ∧  𝑥  ∈   ℋ )  →  ( ∀ 𝑦  ∈   ℋ ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ( bra ‘ 𝑥 )  =  𝑡 ) ) | 
						
							| 36 | 35 | reximdva | ⊢ ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  →  ( ∃ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑡 ‘ 𝑦 )  =  ( 𝑦  ·ih  𝑥 )  →  ∃ 𝑥  ∈   ℋ ( bra ‘ 𝑥 )  =  𝑡 ) ) | 
						
							| 37 | 20 36 | mpd | ⊢ ( ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ )  →  ∃ 𝑥  ∈   ℋ ( bra ‘ 𝑥 )  =  𝑡 ) | 
						
							| 38 | 18 37 | impbii | ⊢ ( ∃ 𝑥  ∈   ℋ ( bra ‘ 𝑥 )  =  𝑡  ↔  ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) | 
						
							| 39 | 9 38 | bitri | ⊢ ( 𝑡  ∈  ran  bra  ↔  ( 𝑡  ∈  LinFn  ∧  ( normfn ‘ 𝑡 )  ∈  ℝ ) ) | 
						
							| 40 | 2 3 39 | 3bitr4ri | ⊢ ( 𝑡  ∈  ran  bra  ↔  𝑡  ∈  ( LinFn  ∩  ContFn ) ) | 
						
							| 41 | 40 | eqriv | ⊢ ran  bra  =  ( LinFn  ∩  ContFn ) |