Step |
Hyp |
Ref |
Expression |
1 |
|
lnfncnbd |
⊢ ( 𝑡 ∈ LinFn → ( 𝑡 ∈ ContFn ↔ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
2 |
1
|
pm5.32i |
⊢ ( ( 𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn ) ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
3 |
|
elin |
⊢ ( 𝑡 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn ) ) |
4 |
|
ax-hilex |
⊢ ℋ ∈ V |
5 |
4
|
mptex |
⊢ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ∈ V |
6 |
|
df-bra |
⊢ bra = ( 𝑥 ∈ ℋ ↦ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ) |
7 |
5 6
|
fnmpti |
⊢ bra Fn ℋ |
8 |
|
fvelrnb |
⊢ ( bra Fn ℋ → ( 𝑡 ∈ ran bra ↔ ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝑡 ∈ ran bra ↔ ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) |
10 |
|
bralnfn |
⊢ ( 𝑥 ∈ ℋ → ( bra ‘ 𝑥 ) ∈ LinFn ) |
11 |
|
brabn |
⊢ ( 𝑥 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ) |
12 |
10 11
|
jca |
⊢ ( 𝑥 ∈ ℋ → ( ( bra ‘ 𝑥 ) ∈ LinFn ∧ ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ) ) |
13 |
|
eleq1 |
⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( ( bra ‘ 𝑥 ) ∈ LinFn ↔ 𝑡 ∈ LinFn ) ) |
14 |
|
fveq2 |
⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( normfn ‘ ( bra ‘ 𝑥 ) ) = ( normfn ‘ 𝑡 ) ) |
15 |
14
|
eleq1d |
⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ↔ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
16 |
13 15
|
anbi12d |
⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( ( ( bra ‘ 𝑥 ) ∈ LinFn ∧ ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ) ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) ) |
17 |
12 16
|
syl5ibcom |
⊢ ( 𝑥 ∈ ℋ → ( ( bra ‘ 𝑥 ) = 𝑡 → ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) ) |
18 |
17
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 → ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
19 |
|
riesz1 |
⊢ ( 𝑡 ∈ LinFn → ( ( normfn ‘ 𝑡 ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) |
21 |
|
braval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) |
22 |
|
eqtr3 |
⊢ ( ( ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ∧ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) |
23 |
22
|
ex |
⊢ ( ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
24 |
21 23
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
25 |
24
|
ralimdva |
⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
27 |
|
brafn |
⊢ ( 𝑥 ∈ ℋ → ( bra ‘ 𝑥 ) : ℋ ⟶ ℂ ) |
28 |
|
lnfnf |
⊢ ( 𝑡 ∈ LinFn → 𝑡 : ℋ ⟶ ℂ ) |
29 |
28
|
adantr |
⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → 𝑡 : ℋ ⟶ ℂ ) |
30 |
|
ffn |
⊢ ( ( bra ‘ 𝑥 ) : ℋ ⟶ ℂ → ( bra ‘ 𝑥 ) Fn ℋ ) |
31 |
|
ffn |
⊢ ( 𝑡 : ℋ ⟶ ℂ → 𝑡 Fn ℋ ) |
32 |
|
eqfnfv |
⊢ ( ( ( bra ‘ 𝑥 ) Fn ℋ ∧ 𝑡 Fn ℋ ) → ( ( bra ‘ 𝑥 ) = 𝑡 ↔ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
33 |
30 31 32
|
syl2an |
⊢ ( ( ( bra ‘ 𝑥 ) : ℋ ⟶ ℂ ∧ 𝑡 : ℋ ⟶ ℂ ) → ( ( bra ‘ 𝑥 ) = 𝑡 ↔ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
34 |
27 29 33
|
syl2anr |
⊢ ( ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = 𝑡 ↔ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
35 |
26 34
|
sylibrd |
⊢ ( ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( bra ‘ 𝑥 ) = 𝑡 ) ) |
36 |
35
|
reximdva |
⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → ( ∃ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) ) |
37 |
20 36
|
mpd |
⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) |
38 |
18 37
|
impbii |
⊢ ( ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
39 |
9 38
|
bitri |
⊢ ( 𝑡 ∈ ran bra ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
40 |
2 3 39
|
3bitr4ri |
⊢ ( 𝑡 ∈ ran bra ↔ 𝑡 ∈ ( LinFn ∩ ContFn ) ) |
41 |
40
|
eqriv |
⊢ ran bra = ( LinFn ∩ ContFn ) |