| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑥 ∈ V |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
1 2
|
brco |
⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 4 |
3
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐵 𝑧 ↔ 𝑤 𝐵 𝑧 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑤 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 7 |
|
breq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑥 𝐵 𝑧 ↔ 𝑥 𝐵 𝑤 ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐴 𝑦 ↔ 𝑤 𝐴 𝑦 ) ) |
| 9 |
7 8
|
anbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) |
| 10 |
6 9
|
excomw |
⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 11 |
|
vex |
⊢ 𝑧 ∈ V |
| 12 |
11
|
elrn |
⊢ ( 𝑧 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑧 ) |
| 13 |
12
|
anbi1i |
⊢ ( ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 14 |
2
|
brresi |
⊢ ( 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ↔ ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ) |
| 15 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 16 |
13 14 15
|
3bitr4ri |
⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 17 |
16
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 18 |
4 10 17
|
3bitri |
⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 19 |
2
|
elrn |
⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) |
| 20 |
2
|
elrn |
⊢ ( 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 21 |
18 19 20
|
3bitr4i |
⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ) |
| 22 |
21
|
eqriv |
⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |