Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
1 2
|
brco |
⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
5 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
6
|
elrn |
⊢ ( 𝑧 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑧 ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
9 |
2
|
brresi |
⊢ ( 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ↔ ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ) |
10 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
11 |
8 9 10
|
3bitr4ri |
⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
13 |
4 5 12
|
3bitri |
⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
14 |
2
|
elrn |
⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) |
15 |
2
|
elrn |
⊢ ( 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
16 |
13 14 15
|
3bitr4i |
⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ) |
17 |
16
|
eqriv |
⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |