| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 | 1 2 | brco | ⊢ ( 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 5 |  | excom | ⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 6 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 7 | 6 | elrn | ⊢ ( 𝑧  ∈  ran  𝐵  ↔  ∃ 𝑥 𝑥 𝐵 𝑧 ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( 𝑧  ∈  ran  𝐵  ∧  𝑧 𝐴 𝑦 )  ↔  ( ∃ 𝑥 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 9 | 2 | brresi | ⊢ ( 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦  ↔  ( 𝑧  ∈  ran  𝐵  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 10 |  | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ( ∃ 𝑥 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 11 | 8 9 10 | 3bitr4ri | ⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 ) | 
						
							| 12 | 11 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ∃ 𝑧 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 ) | 
						
							| 13 | 4 5 12 | 3bitri | ⊢ ( ∃ 𝑥 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑧 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 ) | 
						
							| 14 | 2 | elrn | ⊢ ( 𝑦  ∈  ran  ( 𝐴  ∘  𝐵 )  ↔  ∃ 𝑥 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦 ) | 
						
							| 15 | 2 | elrn | ⊢ ( 𝑦  ∈  ran  ( 𝐴  ↾  ran  𝐵 )  ↔  ∃ 𝑧 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 ) | 
						
							| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑦  ∈  ran  ( 𝐴  ∘  𝐵 )  ↔  𝑦  ∈  ran  ( 𝐴  ↾  ran  𝐵 ) ) | 
						
							| 17 | 16 | eqriv | ⊢ ran  ( 𝐴  ∘  𝐵 )  =  ran  ( 𝐴  ↾  ran  𝐵 ) |