| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmcoeq | ⊢ ( dom  ◡ 𝐵  =  ran  ◡ 𝐴  →  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 )  =  dom  ◡ 𝐴 ) | 
						
							| 2 |  | eqcom | ⊢ ( dom  𝐴  =  ran  𝐵  ↔  ran  𝐵  =  dom  𝐴 ) | 
						
							| 3 |  | df-rn | ⊢ ran  𝐵  =  dom  ◡ 𝐵 | 
						
							| 4 |  | dfdm4 | ⊢ dom  𝐴  =  ran  ◡ 𝐴 | 
						
							| 5 | 3 4 | eqeq12i | ⊢ ( ran  𝐵  =  dom  𝐴  ↔  dom  ◡ 𝐵  =  ran  ◡ 𝐴 ) | 
						
							| 6 | 2 5 | bitri | ⊢ ( dom  𝐴  =  ran  𝐵  ↔  dom  ◡ 𝐵  =  ran  ◡ 𝐴 ) | 
						
							| 7 |  | df-rn | ⊢ ran  ( 𝐴  ∘  𝐵 )  =  dom  ◡ ( 𝐴  ∘  𝐵 ) | 
						
							| 8 |  | cnvco | ⊢ ◡ ( 𝐴  ∘  𝐵 )  =  ( ◡ 𝐵  ∘  ◡ 𝐴 ) | 
						
							| 9 | 8 | dmeqi | ⊢ dom  ◡ ( 𝐴  ∘  𝐵 )  =  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 ) | 
						
							| 10 | 7 9 | eqtri | ⊢ ran  ( 𝐴  ∘  𝐵 )  =  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 ) | 
						
							| 11 |  | df-rn | ⊢ ran  𝐴  =  dom  ◡ 𝐴 | 
						
							| 12 | 10 11 | eqeq12i | ⊢ ( ran  ( 𝐴  ∘  𝐵 )  =  ran  𝐴  ↔  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 )  =  dom  ◡ 𝐴 ) | 
						
							| 13 | 1 6 12 | 3imtr4i | ⊢ ( dom  𝐴  =  ran  𝐵  →  ran  ( 𝐴  ∘  𝐵 )  =  ran  𝐴 ) |