Step |
Hyp |
Ref |
Expression |
1 |
|
dmcoeq |
⊢ ( dom ◡ 𝐵 = ran ◡ 𝐴 → dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) = dom ◡ 𝐴 ) |
2 |
|
eqcom |
⊢ ( dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴 ) |
3 |
|
df-rn |
⊢ ran 𝐵 = dom ◡ 𝐵 |
4 |
|
dfdm4 |
⊢ dom 𝐴 = ran ◡ 𝐴 |
5 |
3 4
|
eqeq12i |
⊢ ( ran 𝐵 = dom 𝐴 ↔ dom ◡ 𝐵 = ran ◡ 𝐴 ) |
6 |
2 5
|
bitri |
⊢ ( dom 𝐴 = ran 𝐵 ↔ dom ◡ 𝐵 = ran ◡ 𝐴 ) |
7 |
|
df-rn |
⊢ ran ( 𝐴 ∘ 𝐵 ) = dom ◡ ( 𝐴 ∘ 𝐵 ) |
8 |
|
cnvco |
⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
9 |
8
|
dmeqi |
⊢ dom ◡ ( 𝐴 ∘ 𝐵 ) = dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
10 |
7 9
|
eqtri |
⊢ ran ( 𝐴 ∘ 𝐵 ) = dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
11 |
|
df-rn |
⊢ ran 𝐴 = dom ◡ 𝐴 |
12 |
10 11
|
eqeq12i |
⊢ ( ran ( 𝐴 ∘ 𝐵 ) = ran 𝐴 ↔ dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) = dom ◡ 𝐴 ) |
13 |
1 6 12
|
3imtr4i |
⊢ ( dom 𝐴 = ran 𝐵 → ran ( 𝐴 ∘ 𝐵 ) = ran 𝐴 ) |