Step |
Hyp |
Ref |
Expression |
1 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
3 |
|
simp1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 ∈ 𝐴 ) |
4 |
|
simp3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
5 |
|
fmf |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝑌 ∈ 𝐴 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) |
7 |
6
|
ffnd |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ) |
8 |
|
fvelrnb |
⊢ ( ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ∃ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ∃ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 ) ) |
10 |
|
ffn |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) |
11 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑌 ↔ 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
12 |
10 11
|
sylib |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
13 |
|
foima |
⊢ ( 𝐹 : 𝑌 –onto→ ran 𝐹 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
14 |
12 13
|
syl |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
16 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑋 ∈ 𝐿 ) |
17 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑏 ∈ ( fBas ‘ 𝑌 ) ) |
18 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
19 |
|
fgcl |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝑏 ) ∈ ( Fil ‘ 𝑌 ) ) |
20 |
|
filtop |
⊢ ( ( 𝑌 filGen 𝑏 ) ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) |
23 |
|
eqid |
⊢ ( 𝑌 filGen 𝑏 ) = ( 𝑌 filGen 𝑏 ) |
24 |
23
|
imaelfm |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ) |
25 |
16 17 18 22 24
|
syl31anc |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ) |
26 |
15 25
|
eqeltrrd |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ) |
27 |
|
eleq2 |
⊢ ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ( ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ↔ ran 𝐹 ∈ 𝐿 ) ) |
28 |
26 27
|
syl5ibcom |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) |
29 |
28
|
ex |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) ) |
30 |
1 29
|
sylan |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) ) |
31 |
30
|
3adant1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) ) |
32 |
31
|
rexlimdv |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) |
33 |
9 32
|
sylbid |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) → ran 𝐹 ∈ 𝐿 ) ) |
34 |
|
simpl2 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
35 |
|
filelss |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ⊆ 𝑋 ) |
36 |
35
|
ex |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋 ) ) |
37 |
34 36
|
syl |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋 ) ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ∈ 𝐿 ) |
39 |
|
eqidd |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑡 ) ) |
40 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑡 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑡 ) ) |
41 |
40
|
rspceeqv |
⊢ ( ( 𝑡 ∈ 𝐿 ∧ ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑡 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
42 |
38 39 41
|
syl2anc |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
43 |
|
simpl1 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 ∈ 𝐴 ) |
44 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑡 ) ⊆ dom 𝐹 |
45 |
|
fdm |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → dom 𝐹 = 𝑌 ) |
46 |
44 45
|
sseqtrid |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
47 |
46
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
49 |
43 48
|
ssexd |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ V ) |
50 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) |
51 |
50
|
elrnmpt |
⊢ ( ( ◡ 𝐹 “ 𝑡 ) ∈ V → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
52 |
49 51
|
syl |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
54 |
42 53
|
mpbird |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
55 |
|
ssid |
⊢ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) |
56 |
|
ffun |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) |
57 |
56
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → Fun 𝐹 ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → Fun 𝐹 ) |
59 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑡 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ↔ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) ) ) |
60 |
58 44 59
|
sylancl |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ↔ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) ) ) |
61 |
55 60
|
mpbiri |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) |
62 |
|
imaeq2 |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑡 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ) |
63 |
62
|
sseq1d |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑡 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) ) |
64 |
63
|
rspcev |
⊢ ( ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) → ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
65 |
54 61 64
|
syl2anc |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
66 |
65
|
ex |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 → ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) |
67 |
37 66
|
jcad |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
68 |
34
|
adantr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
69 |
50
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
70 |
69
|
elv |
⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
71 |
|
ssid |
⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) |
72 |
57
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → Fun 𝐹 ) |
73 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 |
74 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ↔ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) |
75 |
72 73 74
|
sylancl |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ↔ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) |
76 |
71 75
|
mpbiri |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ) |
77 |
|
imassrn |
⊢ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ran 𝐹 |
78 |
|
ssin |
⊢ ( ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ran 𝐹 ) ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( 𝑥 ∩ ran 𝐹 ) ) |
79 |
76 77 78
|
sylanblc |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( 𝑥 ∩ ran 𝐹 ) ) |
80 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑥 ∩ ran 𝐹 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹 ) ) |
81 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑌 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
82 |
10 81
|
syl |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
83 |
82
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
84 |
83
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
85 |
72
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → Fun 𝐹 ) |
86 |
85 73
|
jctir |
⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) ) |
87 |
57
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → Fun 𝐹 ) |
88 |
87
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → Fun 𝐹 ) |
89 |
45
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → dom 𝐹 = 𝑌 ) |
90 |
89
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → dom 𝐹 = 𝑌 ) |
91 |
90
|
eleq2d |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝑌 ) ) |
92 |
91
|
biimpar |
⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ dom 𝐹 ) |
93 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
94 |
88 92 93
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
95 |
94
|
biimpa |
⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
96 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
97 |
86 95 96
|
sylc |
⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) |
98 |
97
|
ex |
⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
99 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
100 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ↔ 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
101 |
99 100
|
imbi12d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
102 |
98 101
|
syl5ibcom |
⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
103 |
102
|
rexlimdva |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
104 |
84 103
|
sylbid |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑧 ∈ ran 𝐹 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
105 |
104
|
impcomd |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹 ) → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
106 |
80 105
|
syl5bi |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ ran 𝐹 ) → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
107 |
106
|
ssrdv |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑥 ∩ ran 𝐹 ) ⊆ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) |
108 |
79 107
|
eqssd |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∩ ran 𝐹 ) ) |
109 |
|
filin |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
110 |
109
|
3exp |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐿 → ( ran 𝐹 ∈ 𝐿 → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) ) ) |
111 |
110
|
com23 |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( ran 𝐹 ∈ 𝐿 → ( 𝑥 ∈ 𝐿 → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) ) ) |
112 |
111
|
3ad2ant2 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ran 𝐹 ∈ 𝐿 → ( 𝑥 ∈ 𝐿 → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) ) ) |
113 |
112
|
imp31 |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
114 |
113
|
adantr |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
115 |
108 114
|
eqeltrd |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) |
116 |
115
|
exp32 |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) ) |
117 |
|
imaeq2 |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) |
118 |
117
|
sseq1d |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) ) |
119 |
117
|
eleq1d |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ∈ 𝐿 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) |
120 |
119
|
imbi2d |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ↔ ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) ) |
121 |
118 120
|
imbi12d |
⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ↔ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) ) ) |
122 |
116 121
|
syl5ibrcom |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ) ) |
123 |
122
|
rexlimdva |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ) ) |
124 |
70 123
|
syl5bi |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ) ) |
125 |
124
|
imp44 |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) |
126 |
|
simprr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ⊆ 𝑋 ) |
127 |
|
simprlr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
128 |
|
filss |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝐹 “ 𝑠 ) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐿 ) |
129 |
68 125 126 127 128
|
syl13anc |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ∈ 𝐿 ) |
130 |
129
|
exp44 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
131 |
130
|
rexlimdv |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
132 |
131
|
impcomd |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) ) |
133 |
67 132
|
impbid |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
134 |
2
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑋 ∈ 𝐿 ) |
135 |
|
rnelfmlem |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |
136 |
|
simpl3 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
137 |
|
elfm |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
138 |
134 135 136 137
|
syl3anc |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
139 |
133 138
|
bitr4d |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
140 |
139
|
eqrdv |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
141 |
7
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ) |
142 |
|
fnfvelrn |
⊢ ( ( ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ ran ( 𝑋 FilMap 𝐹 ) ) |
143 |
141 135 142
|
syl2anc |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ ran ( 𝑋 FilMap 𝐹 ) ) |
144 |
140 143
|
eqeltrd |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ) |
145 |
144
|
ex |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ran 𝐹 ∈ 𝐿 → 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ) ) |
146 |
33 145
|
impbid |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ran 𝐹 ∈ 𝐿 ) ) |