| Step | Hyp | Ref | Expression | 
						
							| 1 |  | filtop | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑌  ∈  𝐴 ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 5 |  | fmf | ⊢ ( ( 𝑋  ∈  𝐿  ∧  𝑌  ∈  𝐴  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑋  FilMap  𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑋  FilMap  𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) | 
						
							| 7 | 6 | ffnd | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑋  FilMap  𝐹 )  Fn  ( fBas ‘ 𝑌 ) ) | 
						
							| 8 |  | fvelrnb | ⊢ ( ( 𝑋  FilMap  𝐹 )  Fn  ( fBas ‘ 𝑌 )  →  ( 𝐿  ∈  ran  ( 𝑋  FilMap  𝐹 )  ↔  ∃ 𝑏  ∈  ( fBas ‘ 𝑌 ) ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐿  ∈  ran  ( 𝑋  FilMap  𝐹 )  ↔  ∃ 𝑏  ∈  ( fBas ‘ 𝑌 ) ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿 ) ) | 
						
							| 10 |  | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹  Fn  𝑌 ) | 
						
							| 11 |  | dffn4 | ⊢ ( 𝐹  Fn  𝑌  ↔  𝐹 : 𝑌 –onto→ ran  𝐹 ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹 : 𝑌 –onto→ ran  𝐹 ) | 
						
							| 13 |  | foima | ⊢ ( 𝐹 : 𝑌 –onto→ ran  𝐹  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  𝑋  ∈  𝐿 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  𝑏  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 19 |  | fgcl | ⊢ ( 𝑏  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen 𝑏 )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 20 |  | filtop | ⊢ ( ( 𝑌 filGen 𝑏 )  ∈  ( Fil ‘ 𝑌 )  →  𝑌  ∈  ( 𝑌 filGen 𝑏 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑏  ∈  ( fBas ‘ 𝑌 )  →  𝑌  ∈  ( 𝑌 filGen 𝑏 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  𝑌  ∈  ( 𝑌 filGen 𝑏 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑌 filGen 𝑏 )  =  ( 𝑌 filGen 𝑏 ) | 
						
							| 24 | 23 | imaelfm | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝑏  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑌  ∈  ( 𝑌 filGen 𝑏 ) )  →  ( 𝐹  “  𝑌 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 ) ) | 
						
							| 25 | 16 17 18 22 24 | syl31anc | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  ( 𝐹  “  𝑌 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 ) ) | 
						
							| 26 | 15 25 | eqeltrrd | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  ran  𝐹  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 ) ) | 
						
							| 27 |  | eleq2 | ⊢ ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿  →  ( ran  𝐹  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  ↔  ran  𝐹  ∈  𝐿 ) ) | 
						
							| 28 | 26 27 | syl5ibcom | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑏  ∈  ( fBas ‘ 𝑌 ) )  →  ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿  →  ran  𝐹  ∈  𝐿 ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝑋  ∈  𝐿  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  →  ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿  →  ran  𝐹  ∈  𝐿 ) ) ) | 
						
							| 30 | 1 29 | sylan | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  →  ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿  →  ran  𝐹  ∈  𝐿 ) ) ) | 
						
							| 31 | 30 | 3adant1 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  →  ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿  →  ran  𝐹  ∈  𝐿 ) ) ) | 
						
							| 32 | 31 | rexlimdv | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ∃ 𝑏  ∈  ( fBas ‘ 𝑌 ) ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑏 )  =  𝐿  →  ran  𝐹  ∈  𝐿 ) ) | 
						
							| 33 | 9 32 | sylbid | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐿  ∈  ran  ( 𝑋  FilMap  𝐹 )  →  ran  𝐹  ∈  𝐿 ) ) | 
						
							| 34 |  | simpl2 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 35 |  | filelss | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝑡  ∈  𝐿 )  →  𝑡  ⊆  𝑋 ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑡  ∈  𝐿  →  𝑡  ⊆  𝑋 ) ) | 
						
							| 37 | 34 36 | syl | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑡  ∈  𝐿  →  𝑡  ⊆  𝑋 ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  𝑡  ∈  𝐿 ) | 
						
							| 39 |  | eqidd | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑡 ) ) | 
						
							| 40 |  | imaeq2 | ⊢ ( 𝑥  =  𝑡  →  ( ◡ 𝐹  “  𝑥 )  =  ( ◡ 𝐹  “  𝑡 ) ) | 
						
							| 41 | 40 | rspceeqv | ⊢ ( ( 𝑡  ∈  𝐿  ∧  ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑡 ) )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 42 | 38 39 41 | syl2anc | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 43 |  | simpl1 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝑌  ∈  𝐴 ) | 
						
							| 44 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑡 )  ⊆  dom  𝐹 | 
						
							| 45 |  | fdm | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  dom  𝐹  =  𝑌 ) | 
						
							| 46 | 44 45 | sseqtrid | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ◡ 𝐹  “  𝑡 )  ⊆  𝑌 ) | 
						
							| 47 | 46 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ◡ 𝐹  “  𝑡 )  ⊆  𝑌 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  ⊆  𝑌 ) | 
						
							| 49 | 43 48 | ssexd | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  ∈  V ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 51 | 50 | elrnmpt | ⊢ ( ( ◡ 𝐹  “  𝑡 )  ∈  V  →  ( ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 52 | 49 51 | syl | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ( ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 54 | 42 53 | mpbird | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 55 |  | ssid | ⊢ ( ◡ 𝐹  “  𝑡 )  ⊆  ( ◡ 𝐹  “  𝑡 ) | 
						
							| 56 |  | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  Fun  𝐹 ) | 
						
							| 57 | 56 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  Fun  𝐹 ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  Fun  𝐹 ) | 
						
							| 59 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  ( ◡ 𝐹  “  𝑡 )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡  ↔  ( ◡ 𝐹  “  𝑡 )  ⊆  ( ◡ 𝐹  “  𝑡 ) ) ) | 
						
							| 60 | 58 44 59 | sylancl | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡  ↔  ( ◡ 𝐹  “  𝑡 )  ⊆  ( ◡ 𝐹  “  𝑡 ) ) ) | 
						
							| 61 | 55 60 | mpbiri | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) | 
						
							| 62 |  | imaeq2 | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑡 )  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) ) ) | 
						
							| 63 | 62 | sseq1d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑡 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  ↔  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) ) | 
						
							| 64 | 63 | rspcev | ⊢ ( ( ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 )  →  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) | 
						
							| 65 | 54 61 64 | syl2anc | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑡  ∈  𝐿 )  →  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) | 
						
							| 66 | 65 | ex | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑡  ∈  𝐿  →  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) | 
						
							| 67 | 37 66 | jcad | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑡  ∈  𝐿  →  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 68 | 34 | adantr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑡 )  ∧  𝑡  ⊆  𝑋 ) )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 69 | 50 | elrnmpt | ⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 70 | 69 | elv | ⊢ ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 71 |  | ssid | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  ( ◡ 𝐹  “  𝑥 ) | 
						
							| 72 | 57 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  Fun  𝐹 ) | 
						
							| 73 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 | 
						
							| 74 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑥  ↔  ( ◡ 𝐹  “  𝑥 )  ⊆  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 75 | 72 73 74 | sylancl | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑥  ↔  ( ◡ 𝐹  “  𝑥 )  ⊆  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 76 | 71 75 | mpbiri | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑥 ) | 
						
							| 77 |  | imassrn | ⊢ ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ran  𝐹 | 
						
							| 78 |  | ssin | ⊢ ( ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑥  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ran  𝐹 )  ↔  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 79 | 76 77 78 | sylanblc | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 80 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑥  ∩  ran  𝐹 )  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  ran  𝐹 ) ) | 
						
							| 81 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑌  →  ( 𝑧  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑌 ( 𝐹 ‘ 𝑦 )  =  𝑧 ) ) | 
						
							| 82 | 10 81 | syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑧  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑌 ( 𝐹 ‘ 𝑦 )  =  𝑧 ) ) | 
						
							| 83 | 82 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑧  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑌 ( 𝐹 ‘ 𝑦 )  =  𝑧 ) ) | 
						
							| 84 | 83 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑧  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑌 ( 𝐹 ‘ 𝑦 )  =  𝑧 ) ) | 
						
							| 85 | 72 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 )  →  Fun  𝐹 ) | 
						
							| 86 | 85 73 | jctir | ⊢ ( ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 )  →  ( Fun  𝐹  ∧  ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 ) ) | 
						
							| 87 | 57 | ad2antrr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  Fun  𝐹 ) | 
						
							| 88 | 87 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  Fun  𝐹 ) | 
						
							| 89 | 45 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  dom  𝐹  =  𝑌 ) | 
						
							| 90 | 89 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  dom  𝐹  =  𝑌 ) | 
						
							| 91 | 90 | eleq2d | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑦  ∈  dom  𝐹  ↔  𝑦  ∈  𝑌 ) ) | 
						
							| 92 | 91 | biimpar | ⊢ ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  dom  𝐹 ) | 
						
							| 93 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  𝑦  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 94 | 88 92 93 | syl2anc | ⊢ ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 95 | 94 | biimpa | ⊢ ( ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 )  →  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 96 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 97 | 86 95 96 | sylc | ⊢ ( ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 98 | 97 | ex | ⊢ ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 99 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 100 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ↔  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 101 | 99 100 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ( 𝑧  ∈  𝑥  →  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 102 | 98 101 | syl5ibcom | ⊢ ( ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑧  →  ( 𝑧  ∈  𝑥  →  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 103 | 102 | rexlimdva | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ∃ 𝑦  ∈  𝑌 ( 𝐹 ‘ 𝑦 )  =  𝑧  →  ( 𝑧  ∈  𝑥  →  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 104 | 84 103 | sylbid | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑧  ∈  ran  𝐹  →  ( 𝑧  ∈  𝑥  →  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 105 | 104 | impcomd | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  ran  𝐹 )  →  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 106 | 80 105 | biimtrid | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  ran  𝐹 )  →  𝑧  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 107 | 106 | ssrdv | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑥  ∩  ran  𝐹 )  ⊆  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 108 | 79 107 | eqssd | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 109 |  | filin | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐿  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 110 | 109 | 3exp | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑥  ∈  𝐿  →  ( ran  𝐹  ∈  𝐿  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) ) ) | 
						
							| 111 | 110 | com23 | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ( ran  𝐹  ∈  𝐿  →  ( 𝑥  ∈  𝐿  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) ) ) | 
						
							| 112 | 111 | 3ad2ant2 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ran  𝐹  ∈  𝐿  →  ( 𝑥  ∈  𝐿  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) ) ) | 
						
							| 113 | 112 | imp31 | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 115 | 108 114 | eqeltrd | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ∈  𝐿 ) | 
						
							| 116 | 115 | exp32 | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ∈  𝐿 ) ) ) | 
						
							| 117 |  | imaeq2 | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 118 | 117 | sseq1d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  ↔  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 ) ) | 
						
							| 119 | 117 | eleq1d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ∈  𝐿  ↔  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ∈  𝐿 ) ) | 
						
							| 120 | 119 | imbi2d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  𝑠 )  ∈  𝐿 )  ↔  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ∈  𝐿 ) ) ) | 
						
							| 121 | 118 120 | imbi12d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) )  ↔  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ∈  𝐿 ) ) ) ) | 
						
							| 122 | 116 121 | syl5ibrcom | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) ) ) ) | 
						
							| 123 | 122 | rexlimdva | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) ) ) ) | 
						
							| 124 | 70 123 | biimtrid | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) ) ) ) | 
						
							| 125 | 124 | imp44 | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑡 )  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) | 
						
							| 126 |  | simprr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑡 )  ∧  𝑡  ⊆  𝑋 ) )  →  𝑡  ⊆  𝑋 ) | 
						
							| 127 |  | simprlr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑡 )  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  𝑠 )  ⊆  𝑡 ) | 
						
							| 128 |  | filss | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( 𝐹  “  𝑠 )  ∈  𝐿  ∧  𝑡  ⊆  𝑋  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑡 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 129 | 68 125 126 127 128 | syl13anc | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑡 )  ∧  𝑡  ⊆  𝑋 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 130 | 129 | exp44 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 131 | 130 | rexlimdv | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 132 | 131 | impcomd | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 )  →  𝑡  ∈  𝐿 ) ) | 
						
							| 133 | 67 132 | impbid | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑡  ∈  𝐿  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 134 | 2 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝑋  ∈  𝐿 ) | 
						
							| 135 |  | rnelfmlem | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 136 |  | simpl3 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 137 |  | elfm | ⊢ ( ( 𝑋  ∈  𝐿  ∧  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 138 | 134 135 136 137 | syl3anc | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 139 | 133 138 | bitr4d | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑡  ∈  𝐿  ↔  𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 140 | 139 | eqrdv | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 141 | 7 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑋  FilMap  𝐹 )  Fn  ( fBas ‘ 𝑌 ) ) | 
						
							| 142 |  | fnfvelrn | ⊢ ( ( ( 𝑋  FilMap  𝐹 )  Fn  ( fBas ‘ 𝑌 )  ∧  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  ran  ( 𝑋  FilMap  𝐹 ) ) | 
						
							| 143 | 141 135 142 | syl2anc | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  ran  ( 𝑋  FilMap  𝐹 ) ) | 
						
							| 144 | 140 143 | eqeltrd | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝐿  ∈  ran  ( 𝑋  FilMap  𝐹 ) ) | 
						
							| 145 | 144 | ex | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ran  𝐹  ∈  𝐿  →  𝐿  ∈  ran  ( 𝑋  FilMap  𝐹 ) ) ) | 
						
							| 146 | 33 145 | impbid | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐿  ∈  ran  ( 𝑋  FilMap  𝐹 )  ↔  ran  𝐹  ∈  𝐿 ) ) |