| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝑌  ∈  𝐴 ) | 
						
							| 2 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 | 
						
							| 3 |  | simpl3 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 4 | 2 3 | fssdm | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑥 )  ⊆  𝑌 ) | 
						
							| 5 | 1 4 | sselpwd | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑥 )  ∈  𝒫  𝑌 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑥 )  ∈  𝒫  𝑌 ) | 
						
							| 7 | 6 | fmpttd | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) : 𝐿 ⟶ 𝒫  𝑌 ) | 
						
							| 8 | 7 | frnd | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝒫  𝑌 ) | 
						
							| 9 |  | filtop | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝑋  ∈  𝐿 ) | 
						
							| 12 |  | fimacnv | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ◡ 𝐹  “  𝑋 )  =  𝑌 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝑌  =  ( ◡ 𝐹  “  𝑋 ) ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑌  =  ( ◡ 𝐹  “  𝑋 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝑌  =  ( ◡ 𝐹  “  𝑋 ) ) | 
						
							| 16 |  | imaeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ◡ 𝐹  “  𝑥 )  =  ( ◡ 𝐹  “  𝑋 ) ) | 
						
							| 17 | 16 | rspceeqv | ⊢ ( ( 𝑋  ∈  𝐿  ∧  𝑌  =  ( ◡ 𝐹  “  𝑋 ) )  →  ∃ 𝑥  ∈  𝐿 𝑌  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 18 | 11 15 17 | syl2anc | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ∃ 𝑥  ∈  𝐿 𝑌  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 20 | 19 | elrnmpt | ⊢ ( 𝑌  ∈  𝐴  →  ( 𝑌  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑌  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑌  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑌  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑌  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑌  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 23 | 18 22 | mpbird | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  𝑌  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 24 | 23 | ne0d | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) | 
						
							| 25 |  | 0nelfil | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ¬  ∅  ∈  𝐿 ) | 
						
							| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ¬  ∅  ∈  𝐿 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ¬  ∅  ∈  𝐿 ) | 
						
							| 28 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 29 | 19 | elrnmpt | ⊢ ( ∅  ∈  V  →  ( ∅  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ∅  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( ∅  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ∅  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 31 |  | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹  Fn  𝑌 ) | 
						
							| 32 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑌  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 34 | 33 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 36 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 37 | 36 | biimparc | ⊢ ( ( 𝑦  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑥 ) | 
						
							| 38 | 37 | ad2ant2l | ⊢ ( ( ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑥 ) | 
						
							| 39 | 38 | adantll | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑥 ) | 
						
							| 40 |  | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  Fun  𝐹 ) | 
						
							| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  Fun  𝐹 ) | 
						
							| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  Fun  𝐹 ) | 
						
							| 43 |  | fdm | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  dom  𝐹  =  𝑌 ) | 
						
							| 44 | 43 | eleq2d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑧  ∈  dom  𝐹  ↔  𝑧  ∈  𝑌 ) ) | 
						
							| 45 | 44 | biimpar | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑧  ∈  𝑌 )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 46 | 45 | 3ad2antl3 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑧  ∈  𝑌 )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑧  ∈  𝑌 )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 48 | 47 | ad2ant2r | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 49 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  ↔  𝑧  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 50 | 42 48 49 | syl2anc | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  ↔  𝑧  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 51 | 39 50 | mpbid | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  𝑧  ∈  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 52 |  | n0i | ⊢ ( 𝑧  ∈  ( ◡ 𝐹  “  𝑥 )  →  ¬  ( ◡ 𝐹  “  𝑥 )  =  ∅ ) | 
						
							| 53 |  | eqcom | ⊢ ( ( ◡ 𝐹  “  𝑥 )  =  ∅  ↔  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 54 | 52 53 | sylnib | ⊢ ( 𝑧  ∈  ( ◡ 𝐹  “  𝑥 )  →  ¬  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 55 | 51 54 | syl | ⊢ ( ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  ∧  ( 𝑧  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  →  ¬  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 56 | 55 | rexlimdvaa | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  →  ( ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ¬  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 57 | 35 56 | sylbid | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝑦  ∈  ran  𝐹  →  ¬  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 58 | 57 | con2d | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  𝑦  ∈  𝑥 ) )  →  ( ∅  =  ( ◡ 𝐹  “  𝑥 )  →  ¬  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 59 | 58 | expr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑦  ∈  𝑥  →  ( ∅  =  ( ◡ 𝐹  “  𝑥 )  →  ¬  𝑦  ∈  ran  𝐹 ) ) ) | 
						
							| 60 | 59 | com23 | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( ∅  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 ) ) ) | 
						
							| 61 | 60 | impr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 62 | 61 | alrimiv | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 63 |  | imnan | ⊢ ( ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 )  ↔  ¬  ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 64 |  | elin | ⊢ ( 𝑦  ∈  ( 𝑥  ∩  ran  𝐹 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 65 | 63 64 | xchbinxr | ⊢ ( ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 )  ↔  ¬  𝑦  ∈  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 66 | 65 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 )  ↔  ∀ 𝑦 ¬  𝑦  ∈  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 67 |  | eq0 | ⊢ ( ( 𝑥  ∩  ran  𝐹 )  =  ∅  ↔  ∀ 𝑦 ¬  𝑦  ∈  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 68 |  | eqcom | ⊢ ( ( 𝑥  ∩  ran  𝐹 )  =  ∅  ↔  ∅  =  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 69 | 66 67 68 | 3bitr2i | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ¬  𝑦  ∈  ran  𝐹 )  ↔  ∅  =  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 70 | 62 69 | sylib | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  ∅  =  ( 𝑥  ∩  ran  𝐹 ) ) | 
						
							| 71 |  | simpll2 | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 72 |  | simprl | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  𝑥  ∈  𝐿 ) | 
						
							| 73 |  | simplr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  ran  𝐹  ∈  𝐿 ) | 
						
							| 74 |  | filin | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐿  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 75 | 71 72 73 74 | syl3anc | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 76 | 70 75 | eqeltrd | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝐿  ∧  ∅  =  ( ◡ 𝐹  “  𝑥 ) ) )  →  ∅  ∈  𝐿 ) | 
						
							| 77 | 76 | rexlimdvaa | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ∃ 𝑥  ∈  𝐿 ∅  =  ( ◡ 𝐹  “  𝑥 )  →  ∅  ∈  𝐿 ) ) | 
						
							| 78 | 30 77 | biimtrid | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ∅  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  →  ∅  ∈  𝐿 ) ) | 
						
							| 79 | 27 78 | mtod | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ¬  ∅  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 80 |  | df-nel | ⊢ ( ∅  ∉  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ¬  ∅  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 81 | 79 80 | sylibr | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ∅  ∉  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 82 | 19 | elrnmpt | ⊢ ( 𝑟  ∈  V  →  ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 83 | 82 | elv | ⊢ ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 84 |  | imaeq2 | ⊢ ( 𝑥  =  𝑢  →  ( ◡ 𝐹  “  𝑥 )  =  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 85 | 84 | eqeq2d | ⊢ ( 𝑥  =  𝑢  →  ( 𝑟  =  ( ◡ 𝐹  “  𝑥 )  ↔  𝑟  =  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 86 | 85 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑥 )  ↔  ∃ 𝑢  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 87 | 83 86 | bitri | ⊢ ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑢  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 88 | 19 | elrnmpt | ⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 89 | 88 | elv | ⊢ ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 90 |  | imaeq2 | ⊢ ( 𝑥  =  𝑣  →  ( ◡ 𝐹  “  𝑥 )  =  ( ◡ 𝐹  “  𝑣 ) ) | 
						
							| 91 | 90 | eqeq2d | ⊢ ( 𝑥  =  𝑣  →  ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  ↔  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 92 | 91 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 )  ↔  ∃ 𝑣  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) | 
						
							| 93 | 89 92 | bitri | ⊢ ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑣  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) | 
						
							| 94 | 87 93 | anbi12i | ⊢ ( ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ( ∃ 𝑢  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  ∃ 𝑣  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 95 |  | reeanv | ⊢ ( ∃ 𝑢  ∈  𝐿 ∃ 𝑣  ∈  𝐿 ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) )  ↔  ( ∃ 𝑢  ∈  𝐿 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  ∃ 𝑣  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 96 | 94 95 | bitr4i | ⊢ ( ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ∃ 𝑢  ∈  𝐿 ∃ 𝑣  ∈  𝐿 ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 97 |  | filin | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  →  ( 𝑢  ∩  𝑣 )  ∈  𝐿 ) | 
						
							| 98 | 97 | 3expb | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 ) )  →  ( 𝑢  ∩  𝑣 )  ∈  𝐿 ) | 
						
							| 99 | 98 | adantlr | ⊢ ( ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 ) )  →  ( 𝑢  ∩  𝑣 )  ∈  𝐿 ) | 
						
							| 100 |  | eqidd | ⊢ ( ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) ) ) | 
						
							| 101 |  | imaeq2 | ⊢ ( 𝑥  =  ( 𝑢  ∩  𝑣 )  →  ( ◡ 𝐹  “  𝑥 )  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) ) ) | 
						
							| 102 | 101 | rspceeqv | ⊢ ( ( ( 𝑢  ∩  𝑣 )  ∈  𝐿  ∧  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) ) )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 103 | 99 100 102 | syl2anc | ⊢ ( ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 ) )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 104 | 103 | 3adantl1 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 ) )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 105 | 104 | ad2ant2r | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 106 |  | simpll1 | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  𝑌  ∈  𝐴 ) | 
						
							| 107 |  | cnvimass | ⊢ ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  dom  𝐹 | 
						
							| 108 | 107 43 | sseqtrid | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  𝑌 ) | 
						
							| 109 | 108 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  𝑌 ) | 
						
							| 110 | 109 | ad2antrr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  𝑌 ) | 
						
							| 111 | 106 110 | ssexd | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ∈  V ) | 
						
							| 112 | 19 | elrnmpt | ⊢ ( ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ∈  V  →  ( ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 113 | 111 112 | syl | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 114 | 105 113 | mpbird | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 115 |  | simprrl | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  𝑟  =  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 116 |  | simprrr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) | 
						
							| 117 | 115 116 | ineq12d | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( 𝑟  ∩  𝑠 )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 118 |  | funcnvcnv | ⊢ ( Fun  𝐹  →  Fun  ◡ ◡ 𝐹 ) | 
						
							| 119 |  | imain | ⊢ ( Fun  ◡ ◡ 𝐹  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 120 | 40 118 119 | 3syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 121 | 120 | 3ad2ant3 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 122 | 121 | ad2antrr | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  =  ( ( ◡ 𝐹  “  𝑢 )  ∩  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 123 | 117 122 | eqtr4d | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( 𝑟  ∩  𝑠 )  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) ) ) | 
						
							| 124 |  | eqimss2 | ⊢ ( ( 𝑟  ∩  𝑠 )  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 126 |  | sseq1 | ⊢ ( 𝑡  =  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  →  ( 𝑡  ⊆  ( 𝑟  ∩  𝑠 )  ↔  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 127 | 126 | rspcev | ⊢ ( ( ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝑟  ∩  𝑠 ) )  →  ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 128 | 114 125 127 | syl2anc | ⊢ ( ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  ∧  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  ∧  ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) ) ) )  →  ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 129 | 128 | exp32 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ( 𝑢  ∈  𝐿  ∧  𝑣  ∈  𝐿 )  →  ( ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) )  →  ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) ) ) | 
						
							| 130 | 129 | rexlimdvv | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ∃ 𝑢  ∈  𝐿 ∃ 𝑣  ∈  𝐿 ( 𝑟  =  ( ◡ 𝐹  “  𝑢 )  ∧  𝑠  =  ( ◡ 𝐹  “  𝑣 ) )  →  ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 131 | 96 130 | biimtrid | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  →  ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 132 | 131 | ralrimivv | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ∀ 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∀ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 133 | 24 81 132 | 3jca | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅  ∧  ∅  ∉  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ∀ 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∀ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 134 |  | isfbas2 | ⊢ ( 𝑌  ∈  𝐴  →  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 )  ↔  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝒫  𝑌  ∧  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅  ∧  ∅  ∉  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ∀ 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∀ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) ) ) ) | 
						
							| 135 | 1 134 | syl | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 )  ↔  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝒫  𝑌  ∧  ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅  ∧  ∅  ∉  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∧  ∀ 𝑟  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∀ 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) 𝑡  ⊆  ( 𝑟  ∩  𝑠 ) ) ) ) ) | 
						
							| 136 | 8 133 135 | mpbir2and | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) ) |