Metamath Proof Explorer


Theorem rnelfmlem

Description: Lemma for rnelfm . (Contributed by Jeff Hankins, 14-Nov-2009)

Ref Expression
Assertion rnelfmlem ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 simpl1 ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → 𝑌𝐴 )
2 cnvimass ( 𝐹𝑥 ) ⊆ dom 𝐹
3 simpl3 ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → 𝐹 : 𝑌𝑋 )
4 2 3 fssdm ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( 𝐹𝑥 ) ⊆ 𝑌 )
5 1 4 sselpwd ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( 𝐹𝑥 ) ∈ 𝒫 𝑌 )
6 5 adantr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ 𝑥𝐿 ) → ( 𝐹𝑥 ) ∈ 𝒫 𝑌 )
7 6 fmpttd ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) : 𝐿 ⟶ 𝒫 𝑌 )
8 7 frnd ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ⊆ 𝒫 𝑌 )
9 filtop ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝐿 )
10 9 3ad2ant2 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → 𝑋𝐿 )
11 10 adantr ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → 𝑋𝐿 )
12 fimacnv ( 𝐹 : 𝑌𝑋 → ( 𝐹𝑋 ) = 𝑌 )
13 12 eqcomd ( 𝐹 : 𝑌𝑋𝑌 = ( 𝐹𝑋 ) )
14 13 3ad2ant3 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → 𝑌 = ( 𝐹𝑋 ) )
15 14 adantr ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → 𝑌 = ( 𝐹𝑋 ) )
16 imaeq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
17 16 rspceeqv ( ( 𝑋𝐿𝑌 = ( 𝐹𝑋 ) ) → ∃ 𝑥𝐿 𝑌 = ( 𝐹𝑥 ) )
18 11 15 17 syl2anc ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ∃ 𝑥𝐿 𝑌 = ( 𝐹𝑥 ) )
19 eqid ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) = ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) )
20 19 elrnmpt ( 𝑌𝐴 → ( 𝑌 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑌 = ( 𝐹𝑥 ) ) )
21 20 3ad2ant1 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝑌 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑌 = ( 𝐹𝑥 ) ) )
22 21 adantr ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( 𝑌 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑌 = ( 𝐹𝑥 ) ) )
23 18 22 mpbird ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → 𝑌 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )
24 23 ne0d ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ≠ ∅ )
25 0nelfil ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐿 )
26 25 3ad2ant2 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → ¬ ∅ ∈ 𝐿 )
27 26 adantr ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ¬ ∅ ∈ 𝐿 )
28 0ex ∅ ∈ V
29 19 elrnmpt ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 ∅ = ( 𝐹𝑥 ) ) )
30 28 29 ax-mp ( ∅ ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 ∅ = ( 𝐹𝑥 ) )
31 ffn ( 𝐹 : 𝑌𝑋𝐹 Fn 𝑌 )
32 fvelrnb ( 𝐹 Fn 𝑌 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = 𝑦 ) )
33 31 32 syl ( 𝐹 : 𝑌𝑋 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = 𝑦 ) )
34 33 3ad2ant3 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = 𝑦 ) )
35 34 ad2antrr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧𝑌 ( 𝐹𝑧 ) = 𝑦 ) )
36 eleq1 ( ( 𝐹𝑧 ) = 𝑦 → ( ( 𝐹𝑧 ) ∈ 𝑥𝑦𝑥 ) )
37 36 biimparc ( ( 𝑦𝑥 ∧ ( 𝐹𝑧 ) = 𝑦 ) → ( 𝐹𝑧 ) ∈ 𝑥 )
38 37 ad2ant2l ( ( ( 𝑥𝐿𝑦𝑥 ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → ( 𝐹𝑧 ) ∈ 𝑥 )
39 38 adantll ( ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → ( 𝐹𝑧 ) ∈ 𝑥 )
40 ffun ( 𝐹 : 𝑌𝑋 → Fun 𝐹 )
41 40 3ad2ant3 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → Fun 𝐹 )
42 41 ad3antrrr ( ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → Fun 𝐹 )
43 fdm ( 𝐹 : 𝑌𝑋 → dom 𝐹 = 𝑌 )
44 43 eleq2d ( 𝐹 : 𝑌𝑋 → ( 𝑧 ∈ dom 𝐹𝑧𝑌 ) )
45 44 biimpar ( ( 𝐹 : 𝑌𝑋𝑧𝑌 ) → 𝑧 ∈ dom 𝐹 )
46 45 3ad2antl3 ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝑧𝑌 ) → 𝑧 ∈ dom 𝐹 )
47 46 adantlr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ 𝑧𝑌 ) → 𝑧 ∈ dom 𝐹 )
48 47 ad2ant2r ( ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → 𝑧 ∈ dom 𝐹 )
49 fvimacnv ( ( Fun 𝐹𝑧 ∈ dom 𝐹 ) → ( ( 𝐹𝑧 ) ∈ 𝑥𝑧 ∈ ( 𝐹𝑥 ) ) )
50 42 48 49 syl2anc ( ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → ( ( 𝐹𝑧 ) ∈ 𝑥𝑧 ∈ ( 𝐹𝑥 ) ) )
51 39 50 mpbid ( ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → 𝑧 ∈ ( 𝐹𝑥 ) )
52 n0i ( 𝑧 ∈ ( 𝐹𝑥 ) → ¬ ( 𝐹𝑥 ) = ∅ )
53 eqcom ( ( 𝐹𝑥 ) = ∅ ↔ ∅ = ( 𝐹𝑥 ) )
54 52 53 sylnib ( 𝑧 ∈ ( 𝐹𝑥 ) → ¬ ∅ = ( 𝐹𝑥 ) )
55 51 54 syl ( ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) ∧ ( 𝑧𝑌 ∧ ( 𝐹𝑧 ) = 𝑦 ) ) → ¬ ∅ = ( 𝐹𝑥 ) )
56 55 rexlimdvaa ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) → ( ∃ 𝑧𝑌 ( 𝐹𝑧 ) = 𝑦 → ¬ ∅ = ( 𝐹𝑥 ) ) )
57 35 56 sylbid ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 → ¬ ∅ = ( 𝐹𝑥 ) ) )
58 57 con2d ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿𝑦𝑥 ) ) → ( ∅ = ( 𝐹𝑥 ) → ¬ 𝑦 ∈ ran 𝐹 ) )
59 58 expr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ 𝑥𝐿 ) → ( 𝑦𝑥 → ( ∅ = ( 𝐹𝑥 ) → ¬ 𝑦 ∈ ran 𝐹 ) ) )
60 59 com23 ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ 𝑥𝐿 ) → ( ∅ = ( 𝐹𝑥 ) → ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) )
61 60 impr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) )
62 61 alrimiv ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) )
63 imnan ( ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ¬ ( 𝑦𝑥𝑦 ∈ ran 𝐹 ) )
64 elin ( 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ↔ ( 𝑦𝑥𝑦 ∈ ran 𝐹 ) )
65 63 64 xchbinxr ( ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) )
66 65 albii ( ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) )
67 eq0 ( ( 𝑥 ∩ ran 𝐹 ) = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) )
68 eqcom ( ( 𝑥 ∩ ran 𝐹 ) = ∅ ↔ ∅ = ( 𝑥 ∩ ran 𝐹 ) )
69 66 67 68 3bitr2i ( ∀ 𝑦 ( 𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ∅ = ( 𝑥 ∩ ran 𝐹 ) )
70 62 69 sylib ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → ∅ = ( 𝑥 ∩ ran 𝐹 ) )
71 simpll2 ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) )
72 simprl ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → 𝑥𝐿 )
73 simplr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → ran 𝐹𝐿 )
74 filin ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 )
75 71 72 73 74 syl3anc ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 )
76 70 75 eqeltrd ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( 𝑥𝐿 ∧ ∅ = ( 𝐹𝑥 ) ) ) → ∅ ∈ 𝐿 )
77 76 rexlimdvaa ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ∃ 𝑥𝐿 ∅ = ( 𝐹𝑥 ) → ∅ ∈ 𝐿 ) )
78 30 77 syl5bi ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ∅ ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) → ∅ ∈ 𝐿 ) )
79 27 78 mtod ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ¬ ∅ ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )
80 df-nel ( ∅ ∉ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ¬ ∅ ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )
81 79 80 sylibr ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ∅ ∉ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )
82 19 elrnmpt ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑟 = ( 𝐹𝑥 ) ) )
83 82 elv ( 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑟 = ( 𝐹𝑥 ) )
84 imaeq2 ( 𝑥 = 𝑢 → ( 𝐹𝑥 ) = ( 𝐹𝑢 ) )
85 84 eqeq2d ( 𝑥 = 𝑢 → ( 𝑟 = ( 𝐹𝑥 ) ↔ 𝑟 = ( 𝐹𝑢 ) ) )
86 85 cbvrexvw ( ∃ 𝑥𝐿 𝑟 = ( 𝐹𝑥 ) ↔ ∃ 𝑢𝐿 𝑟 = ( 𝐹𝑢 ) )
87 83 86 bitri ( 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑢𝐿 𝑟 = ( 𝐹𝑢 ) )
88 19 elrnmpt ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) ) )
89 88 elv ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) )
90 imaeq2 ( 𝑥 = 𝑣 → ( 𝐹𝑥 ) = ( 𝐹𝑣 ) )
91 90 eqeq2d ( 𝑥 = 𝑣 → ( 𝑠 = ( 𝐹𝑥 ) ↔ 𝑠 = ( 𝐹𝑣 ) ) )
92 91 cbvrexvw ( ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) ↔ ∃ 𝑣𝐿 𝑠 = ( 𝐹𝑣 ) )
93 89 92 bitri ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑣𝐿 𝑠 = ( 𝐹𝑣 ) )
94 87 93 anbi12i ( ( 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) ↔ ( ∃ 𝑢𝐿 𝑟 = ( 𝐹𝑢 ) ∧ ∃ 𝑣𝐿 𝑠 = ( 𝐹𝑣 ) ) )
95 reeanv ( ∃ 𝑢𝐿𝑣𝐿 ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ↔ ( ∃ 𝑢𝐿 𝑟 = ( 𝐹𝑢 ) ∧ ∃ 𝑣𝐿 𝑠 = ( 𝐹𝑣 ) ) )
96 94 95 bitr4i ( ( 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) ↔ ∃ 𝑢𝐿𝑣𝐿 ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) )
97 filin ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑢𝐿𝑣𝐿 ) → ( 𝑢𝑣 ) ∈ 𝐿 )
98 97 3expb ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑢𝐿𝑣𝐿 ) ) → ( 𝑢𝑣 ) ∈ 𝐿 )
99 98 adantlr ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ( 𝑢𝐿𝑣𝐿 ) ) → ( 𝑢𝑣 ) ∈ 𝐿 )
100 eqidd ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ( 𝑢𝐿𝑣𝐿 ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹 “ ( 𝑢𝑣 ) ) )
101 imaeq2 ( 𝑥 = ( 𝑢𝑣 ) → ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝑢𝑣 ) ) )
102 101 rspceeqv ( ( ( 𝑢𝑣 ) ∈ 𝐿 ∧ ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹 “ ( 𝑢𝑣 ) ) ) → ∃ 𝑥𝐿 ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹𝑥 ) )
103 99 100 102 syl2anc ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ( 𝑢𝐿𝑣𝐿 ) ) → ∃ 𝑥𝐿 ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹𝑥 ) )
104 103 3adantl1 ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ( 𝑢𝐿𝑣𝐿 ) ) → ∃ 𝑥𝐿 ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹𝑥 ) )
105 104 ad2ant2r ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ∃ 𝑥𝐿 ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹𝑥 ) )
106 simpll1 ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → 𝑌𝐴 )
107 cnvimass ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ dom 𝐹
108 107 43 sseqtrid ( 𝐹 : 𝑌𝑋 → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ 𝑌 )
109 108 3ad2ant3 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ 𝑌 )
110 109 ad2antrr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ 𝑌 )
111 106 110 ssexd ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ∈ V )
112 19 elrnmpt ( ( 𝐹 “ ( 𝑢𝑣 ) ) ∈ V → ( ( 𝐹 “ ( 𝑢𝑣 ) ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹𝑥 ) ) )
113 111 112 syl ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( ( 𝐹 “ ( 𝑢𝑣 ) ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 ( 𝐹 “ ( 𝑢𝑣 ) ) = ( 𝐹𝑥 ) ) )
114 105 113 mpbird ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )
115 simprrl ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → 𝑟 = ( 𝐹𝑢 ) )
116 simprrr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → 𝑠 = ( 𝐹𝑣 ) )
117 115 116 ineq12d ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝑟𝑠 ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
118 funcnvcnv ( Fun 𝐹 → Fun 𝐹 )
119 imain ( Fun 𝐹 → ( 𝐹 “ ( 𝑢𝑣 ) ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
120 40 118 119 3syl ( 𝐹 : 𝑌𝑋 → ( 𝐹 “ ( 𝑢𝑣 ) ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
121 120 3ad2ant3 ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐹 “ ( 𝑢𝑣 ) ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
122 121 ad2antrr ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
123 117 122 eqtr4d ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝑟𝑠 ) = ( 𝐹 “ ( 𝑢𝑣 ) ) )
124 eqimss2 ( ( 𝑟𝑠 ) = ( 𝐹 “ ( 𝑢𝑣 ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝑟𝑠 ) )
125 123 124 syl ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝑟𝑠 ) )
126 sseq1 ( 𝑡 = ( 𝐹 “ ( 𝑢𝑣 ) ) → ( 𝑡 ⊆ ( 𝑟𝑠 ) ↔ ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝑟𝑠 ) ) )
127 126 rspcev ( ( ( 𝐹 “ ( 𝑢𝑣 ) ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝑟𝑠 ) ) → ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) )
128 114 125 127 syl2anc ( ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) ∧ ( ( 𝑢𝐿𝑣𝐿 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) )
129 128 exp32 ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ( 𝑢𝐿𝑣𝐿 ) → ( ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) → ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) ) ) )
130 129 rexlimdvv ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ∃ 𝑢𝐿𝑣𝐿 ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) → ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) ) )
131 96 130 syl5bi ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ( 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) → ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) ) )
132 131 ralrimivv ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ∀ 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) )
133 24 81 132 3jca ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) ) )
134 isfbas2 ( 𝑌𝐴 → ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ⊆ 𝒫 𝑌 ∧ ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) ) ) ) )
135 1 134 syl ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ⊆ 𝒫 𝑌 ∧ ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) 𝑡 ⊆ ( 𝑟𝑠 ) ) ) ) )
136 8 133 135 mpbir2and ( ( ( 𝑌𝐴𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ ran 𝐹𝐿 ) → ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) )