Metamath Proof Explorer


Theorem rnep

Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023)

Ref Expression
Assertion rnep ran E = ( V ∖ { ∅ } )

Proof

Step Hyp Ref Expression
1 dfrn2 ran E = { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 }
2 nfab1 𝑥 { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 }
3 nfcv 𝑥 ( V ∖ { ∅ } )
4 abid ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } ↔ ∃ 𝑦 𝑦 E 𝑥 )
5 epel ( 𝑦 E 𝑥𝑦𝑥 )
6 5 exbii ( ∃ 𝑦 𝑦 E 𝑥 ↔ ∃ 𝑦 𝑦𝑥 )
7 neq0 ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦𝑥 )
8 7 bicomi ( ∃ 𝑦 𝑦𝑥 ↔ ¬ 𝑥 = ∅ )
9 velsn ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ )
10 9 bicomi ( 𝑥 = ∅ ↔ 𝑥 ∈ { ∅ } )
11 10 notbii ( ¬ 𝑥 = ∅ ↔ ¬ 𝑥 ∈ { ∅ } )
12 6 8 11 3bitri ( ∃ 𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ { ∅ } )
13 velcomp ( 𝑥 ∈ ( V ∖ { ∅ } ) ↔ ¬ 𝑥 ∈ { ∅ } )
14 13 bicomi ( ¬ 𝑥 ∈ { ∅ } ↔ 𝑥 ∈ ( V ∖ { ∅ } ) )
15 4 12 14 3bitri ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } ↔ 𝑥 ∈ ( V ∖ { ∅ } ) )
16 2 3 15 eqri { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } = ( V ∖ { ∅ } )
17 1 16 eqtri ran E = ( V ∖ { ∅ } )