Step |
Hyp |
Ref |
Expression |
1 |
|
dfrn2 |
⊢ ran E = { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } |
2 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 ( V ∖ { ∅ } ) |
4 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } ↔ ∃ 𝑦 𝑦 E 𝑥 ) |
5 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 𝑦 E 𝑥 ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
7 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
8 |
7
|
bicomi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑥 ↔ ¬ 𝑥 = ∅ ) |
9 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
10 |
9
|
bicomi |
⊢ ( 𝑥 = ∅ ↔ 𝑥 ∈ { ∅ } ) |
11 |
10
|
notbii |
⊢ ( ¬ 𝑥 = ∅ ↔ ¬ 𝑥 ∈ { ∅ } ) |
12 |
6 8 11
|
3bitri |
⊢ ( ∃ 𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ { ∅ } ) |
13 |
|
velcomp |
⊢ ( 𝑥 ∈ ( V ∖ { ∅ } ) ↔ ¬ 𝑥 ∈ { ∅ } ) |
14 |
13
|
bicomi |
⊢ ( ¬ 𝑥 ∈ { ∅ } ↔ 𝑥 ∈ ( V ∖ { ∅ } ) ) |
15 |
4 12 14
|
3bitri |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } ↔ 𝑥 ∈ ( V ∖ { ∅ } ) ) |
16 |
2 3 15
|
eqri |
⊢ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } = ( V ∖ { ∅ } ) |
17 |
1 16
|
eqtri |
⊢ ran E = ( V ∖ { ∅ } ) |