Metamath Proof Explorer


Theorem rneqdmfinf1o

Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021)

Ref Expression
Assertion rneqdmfinf1o ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → 𝐹 : 𝐴1-1-onto𝐴 )

Proof

Step Hyp Ref Expression
1 dffn4 ( 𝐹 Fn 𝐴𝐹 : 𝐴onto→ ran 𝐹 )
2 1 biimpi ( 𝐹 Fn 𝐴𝐹 : 𝐴onto→ ran 𝐹 )
3 2 3ad2ant2 ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → 𝐹 : 𝐴onto→ ran 𝐹 )
4 foeq3 ( ran 𝐹 = 𝐴 → ( 𝐹 : 𝐴onto→ ran 𝐹𝐹 : 𝐴onto𝐴 ) )
5 4 3ad2ant3 ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → ( 𝐹 : 𝐴onto→ ran 𝐹𝐹 : 𝐴onto𝐴 ) )
6 3 5 mpbid ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → 𝐹 : 𝐴onto𝐴 )
7 enrefg ( 𝐴 ∈ Fin → 𝐴𝐴 )
8 7 3ad2ant1 ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → 𝐴𝐴 )
9 simp1 ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → 𝐴 ∈ Fin )
10 fofinf1o ( ( 𝐹 : 𝐴onto𝐴𝐴𝐴𝐴 ∈ Fin ) → 𝐹 : 𝐴1-1-onto𝐴 )
11 6 8 9 10 syl3anc ( ( 𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴 ) → 𝐹 : 𝐴1-1-onto𝐴 )