Metamath Proof Explorer


Theorem rnffi

Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion rnffi ( ( 𝐹 : 𝐴𝐵𝐴 ∈ Fin ) → ran 𝐹 ∈ Fin )

Proof

Step Hyp Ref Expression
1 ffi ( ( 𝐹 : 𝐴𝐵𝐴 ∈ Fin ) → 𝐹 ∈ Fin )
2 rnfi ( 𝐹 ∈ Fin → ran 𝐹 ∈ Fin )
3 1 2 syl ( ( 𝐹 : 𝐴𝐵𝐴 ∈ Fin ) → ran 𝐹 ∈ Fin )