Metamath Proof Explorer


Theorem rnfi

Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion rnfi ( 𝐴 ∈ Fin → ran 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 df-rn ran 𝐴 = dom 𝐴
2 cnvfi ( 𝐴 ∈ Fin → 𝐴 ∈ Fin )
3 dmfi ( 𝐴 ∈ Fin → dom 𝐴 ∈ Fin )
4 2 3 syl ( 𝐴 ∈ Fin → dom 𝐴 ∈ Fin )
5 1 4 eqeltrid ( 𝐴 ∈ Fin → ran 𝐴 ∈ Fin )