| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng1nfld.m | ⊢ 𝑀  =  { 〈 ( Base ‘ ndx ) ,  { 𝑍 } 〉 ,  〈 ( +g ‘ ndx ) ,  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } 〉 ,  〈 ( .r ‘ ndx ) ,  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } 〉 } | 
						
							| 2 | 1 | rng1nnzr | ⊢ ( 𝑍  ∈  𝑉  →  𝑀  ∉  NzRing ) | 
						
							| 3 |  | df-nel | ⊢ ( 𝑀  ∉  NzRing  ↔  ¬  𝑀  ∈  NzRing ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( 𝑍  ∈  𝑉  →  ¬  𝑀  ∈  NzRing ) | 
						
							| 5 |  | drngnzr | ⊢ ( 𝑀  ∈  DivRing  →  𝑀  ∈  NzRing ) | 
						
							| 6 | 4 5 | nsyl | ⊢ ( 𝑍  ∈  𝑉  →  ¬  𝑀  ∈  DivRing ) | 
						
							| 7 |  | isfld | ⊢ ( 𝑀  ∈  Field  ↔  ( 𝑀  ∈  DivRing  ∧  𝑀  ∈  CRing ) ) | 
						
							| 8 | 7 | simplbi | ⊢ ( 𝑀  ∈  Field  →  𝑀  ∈  DivRing ) | 
						
							| 9 | 6 8 | nsyl | ⊢ ( 𝑍  ∈  𝑉  →  ¬  𝑀  ∈  Field ) | 
						
							| 10 |  | df-nel | ⊢ ( 𝑀  ∉  Field  ↔  ¬  𝑀  ∈  Field ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( 𝑍  ∈  𝑉  →  𝑀  ∉  Field ) |