Step |
Hyp |
Ref |
Expression |
1 |
|
rng1nnzr.m |
⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝑍 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 , 〈 ( .r ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 } |
2 |
|
snex |
⊢ { 𝑍 } ∈ V |
3 |
1
|
rngbase |
⊢ ( { 𝑍 } ∈ V → { 𝑍 } = ( Base ‘ 𝑀 ) ) |
4 |
2 3
|
mp1i |
⊢ ( 𝑍 ∈ 𝑉 → { 𝑍 } = ( Base ‘ 𝑀 ) ) |
5 |
4
|
eqcomd |
⊢ ( 𝑍 ∈ 𝑉 → ( Base ‘ 𝑀 ) = { 𝑍 } ) |
6 |
5
|
fveq2d |
⊢ ( 𝑍 ∈ 𝑉 → ( ♯ ‘ ( Base ‘ 𝑀 ) ) = ( ♯ ‘ { 𝑍 } ) ) |
7 |
|
hashsng |
⊢ ( 𝑍 ∈ 𝑉 → ( ♯ ‘ { 𝑍 } ) = 1 ) |
8 |
6 7
|
eqtrd |
⊢ ( 𝑍 ∈ 𝑉 → ( ♯ ‘ ( Base ‘ 𝑀 ) ) = 1 ) |
9 |
1
|
ring1 |
⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∈ Ring ) |
10 |
|
0ringnnzr |
⊢ ( 𝑀 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑀 ) ) = 1 ↔ ¬ 𝑀 ∈ NzRing ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑍 ∈ 𝑉 → ( ( ♯ ‘ ( Base ‘ 𝑀 ) ) = 1 ↔ ¬ 𝑀 ∈ NzRing ) ) |
12 |
8 11
|
mpbid |
⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing ) |
13 |
|
df-nel |
⊢ ( 𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing ) |
14 |
12 13
|
sylibr |
⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing ) |