| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlsubgsubrng.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idlsubgsubrng.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idlsubgsubrng.u |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 4 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 8 |
4 5 6 7
|
2idlelb |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 9 |
8
|
simplbi |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐼 ) = ( 𝑅 ↾s 𝐼 ) |
| 12 |
4 11
|
rnglidlrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
| 13 |
1 10 3 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
| 14 |
1 2 13
|
rng2idlsubrng |
⊢ ( 𝜑 → 𝐼 ∈ ( SubRng ‘ 𝑅 ) ) |