| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcbas.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
| 2 |
|
rngcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
rngcbas.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 4 |
|
rngchomfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 5 |
1 2 3
|
rngcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 7 |
1 3 5 6
|
rngcval |
⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 9 |
4 8
|
eqtrid |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 10 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
| 12 |
|
fvexd |
⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) ∈ V ) |
| 13 |
5 6
|
rnghmresfn |
⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 14 |
|
inss1 |
⊢ ( 𝑈 ∩ Rng ) ⊆ 𝑈 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) ⊆ 𝑈 ) |
| 16 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
| 17 |
16 3
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = 𝑈 ) |
| 19 |
15 5 18
|
3sstr4d |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 20 |
10 11 12 13 19
|
reschom |
⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 21 |
9 20
|
eqtr4d |
⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) |