| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngccat.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
| 2 |
|
rngcid.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
rngcid.o |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 4 |
|
rngcid.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 5 |
|
rngcid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
rngcid.s |
⊢ 𝑆 = ( Base ‘ 𝑋 ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( 𝑈 ∩ Rng ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) = ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) |
| 9 |
1 4 7 8
|
rngcval |
⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ) |
| 11 |
3 10
|
eqtrid |
⊢ ( 𝜑 → 1 = ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ‘ 𝑋 ) ) |
| 13 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) |
| 14 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
| 15 |
|
incom |
⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) ) |
| 17 |
14 4 16 8
|
rnghmsubcsetc |
⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 18 |
7 8
|
rnghmresfn |
⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) Fn ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) |
| 19 |
|
eqid |
⊢ ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) |
| 20 |
1 2 4
|
rngcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 21 |
20
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 22 |
5 21
|
mpbid |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Rng ) ) |
| 23 |
13 17 18 19 22
|
subcid |
⊢ ( 𝜑 → ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 ) = ( ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ‘ 𝑋 ) ) |
| 24 |
|
elinel1 |
⊢ ( 𝑋 ∈ ( 𝑈 ∩ Rng ) → 𝑋 ∈ 𝑈 ) |
| 25 |
21 24
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈 ) ) |
| 26 |
5 25
|
mpd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 27 |
14 19 4 26
|
estrcid |
⊢ ( 𝜑 → ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 28 |
6
|
eqcomi |
⊢ ( Base ‘ 𝑋 ) = 𝑆 |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑋 ) = 𝑆 ) |
| 30 |
29
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑋 ) ) = ( I ↾ 𝑆 ) ) |
| 31 |
27 30
|
eqtrd |
⊢ ( 𝜑 → ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 ) = ( I ↾ 𝑆 ) ) |
| 32 |
12 23 31
|
3eqtr2d |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑆 ) ) |