Metamath Proof Explorer


Theorem rngcifuestrc

Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020)

Ref Expression
Hypotheses rngcifuestrc.r 𝑅 = ( RngCat ‘ 𝑈 )
rngcifuestrc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
rngcifuestrc.b 𝐵 = ( Base ‘ 𝑅 )
rngcifuestrc.u ( 𝜑𝑈𝑉 )
rngcifuestrc.f ( 𝜑𝐹 = ( I ↾ 𝐵 ) )
rngcifuestrc.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) )
Assertion rngcifuestrc ( 𝜑𝐹 ( 𝑅 Func 𝐸 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 rngcifuestrc.r 𝑅 = ( RngCat ‘ 𝑈 )
2 rngcifuestrc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
3 rngcifuestrc.b 𝐵 = ( Base ‘ 𝑅 )
4 rngcifuestrc.u ( 𝜑𝑈𝑉 )
5 rngcifuestrc.f ( 𝜑𝐹 = ( I ↾ 𝐵 ) )
6 rngcifuestrc.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) )
7 eqid ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 )
8 1 3 4 rngcbas ( 𝜑𝐵 = ( 𝑈 ∩ Rng ) )
9 incom ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 )
10 8 9 eqtrdi ( 𝜑𝐵 = ( Rng ∩ 𝑈 ) )
11 eqid ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 )
12 1 3 4 11 rngchomfval ( 𝜑 → ( Hom ‘ 𝑅 ) = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) )
13 7 4 10 12 rnghmsubcsetc ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) )
14 eqid ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) )
15 eqid ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) )
16 1 4 8 12 rngcval ( 𝜑𝑅 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) )
17 16 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) )
18 3 17 eqtrid ( 𝜑𝐵 = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) )
19 18 reseq2d ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) )
20 5 19 eqtrd ( 𝜑𝐹 = ( I ↾ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) )
21 18 adantr ( ( 𝜑𝑥𝐵 ) → 𝐵 = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) )
22 12 oveqdr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( RngHom ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) )
23 ovres ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( RngHom ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) )
24 23 adantl ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( RngHom ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) )
25 22 24 eqtr2d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 RngHom 𝑦 ) = ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) )
26 25 reseq2d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) )
27 18 21 26 mpoeq123dva ( 𝜑 → ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) , 𝑦 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) )
28 6 27 eqtrd ( 𝜑𝐺 = ( 𝑥 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) , 𝑦 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) )
29 13 14 15 20 28 inclfusubc ( 𝜑𝐹 ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) 𝐺 )
30 2 a1i ( 𝜑𝐸 = ( ExtStrCat ‘ 𝑈 ) )
31 16 30 oveq12d ( 𝜑 → ( 𝑅 Func 𝐸 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) )
32 31 breqd ( 𝜑 → ( 𝐹 ( 𝑅 Func 𝐸 ) 𝐺𝐹 ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) 𝐺 ) )
33 29 32 mpbird ( 𝜑𝐹 ( 𝑅 Func 𝐸 ) 𝐺 )