| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rngcrescrhm.u | 
							⊢ ( 𝜑  →  𝑈  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							rngcrescrhm.c | 
							⊢ 𝐶  =  ( RngCat ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							rngcrescrhm.r | 
							⊢ ( 𝜑  →  𝑅  =  ( Ring  ∩  𝑈 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rngcrescrhm.h | 
							⊢ 𝐻  =  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  ↾cat  𝐻 )  =  ( 𝐶  ↾cat  𝐻 )  | 
						
						
							| 6 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝐶  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐶  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							incom | 
							⊢ ( Ring  ∩  𝑈 )  =  ( 𝑈  ∩  Ring )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  𝑅  =  ( 𝑈  ∩  Ring ) )  | 
						
						
							| 10 | 
							
								
							 | 
							inex1g | 
							⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Ring )  ∈  V )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑈  ∩  Ring )  ∈  V )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝑅  ∈  V )  | 
						
						
							| 13 | 
							
								
							 | 
							inss1 | 
							⊢ ( Ring  ∩  𝑈 )  ⊆  Ring  | 
						
						
							| 14 | 
							
								3 13
							 | 
							eqsstrdi | 
							⊢ ( 𝜑  →  𝑅  ⊆  Ring )  | 
						
						
							| 15 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( 𝑅  ⊆  Ring  ∧  𝑅  ⊆  Ring )  →  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) )  | 
						
						
							| 16 | 
							
								14 14 15
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) )  | 
						
						
							| 17 | 
							
								
							 | 
							rhmfn | 
							⊢  RingHom   Fn  ( Ring  ×  Ring )  | 
						
						
							| 18 | 
							
								
							 | 
							fnssresb | 
							⊢ (  RingHom   Fn  ( Ring  ×  Ring )  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 )  ↔  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mp1i | 
							⊢ ( 𝜑  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 )  ↔  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							mpbird | 
							⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 ) )  | 
						
						
							| 21 | 
							
								4
							 | 
							fneq1i | 
							⊢ ( 𝐻  Fn  ( 𝑅  ×  𝑅 )  ↔  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝐻  Fn  ( 𝑅  ×  𝑅 ) )  | 
						
						
							| 23 | 
							
								5 7 12 22
							 | 
							rescval2 | 
							⊢ ( 𝜑  →  ( 𝐶  ↾cat  𝐻 )  =  ( ( 𝐶  ↾s  𝑅 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) )  |