| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rnghm | ⊢  RngHom   =  ( 𝑟  ∈  Rng ,  𝑠  ∈  Rng  ↦  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 2 |  | ovex | ⊢ ( 𝑤  ↑m  𝑣 )  ∈  V | 
						
							| 3 | 2 | rabex | ⊢ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  ∈  V | 
						
							| 4 | 3 | csbex | ⊢ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  ∈  V | 
						
							| 5 | 4 | csbex | ⊢ ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  ∈  V | 
						
							| 6 | 1 5 | fnmpoi | ⊢  RngHom   Fn  ( Rng  ×  Rng ) |