| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrnghm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | isrnghm.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | isrnghm.m | ⊢  ∗   =  ( .r ‘ 𝑆 ) | 
						
							| 4 |  | rnghmval.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | rnghmval.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 6 |  | rnghmval.a | ⊢  ✚   =  ( +g ‘ 𝑆 ) | 
						
							| 7 |  | df-rnghm | ⊢  RngHom   =  ( 𝑟  ∈  Rng ,  𝑠  ∈  Rng  ↦  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →   RngHom   =  ( 𝑟  ∈  Rng ,  𝑠  ∈  Rng  ↦  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  𝐵 ) | 
						
							| 11 | 10 | csbeq1d | ⊢ ( 𝑟  =  𝑅  →  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  ⦋ 𝐵  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( Base ‘ 𝑠 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 12 4 | eqtr4di | ⊢ ( 𝑠  =  𝑆  →  ( Base ‘ 𝑠 )  =  𝐶 ) | 
						
							| 14 | 13 | csbeq1d | ⊢ ( 𝑠  =  𝑆  →  ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 15 | 14 | csbeq2dv | ⊢ ( 𝑠  =  𝑆  →  ⦋ 𝐵  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  ⦋ 𝐵  /  𝑣 ⦌ ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 16 | 11 15 | sylan9eq | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  ⦋ 𝐵  /  𝑣 ⦌ ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  ⦋ 𝐵  /  𝑣 ⦌ ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 18 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 19 | 4 | fvexi | ⊢ 𝐶  ∈  V | 
						
							| 20 |  | oveq12 | ⊢ ( ( 𝑤  =  𝐶  ∧  𝑣  =  𝐵 )  →  ( 𝑤  ↑m  𝑣 )  =  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝑣  =  𝐵  ∧  𝑤  =  𝐶 )  →  ( 𝑤  ↑m  𝑣 )  =  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 22 |  | raleq | ⊢ ( 𝑣  =  𝐵  →  ( ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 23 | 22 | raleqbi1dv | ⊢ ( 𝑣  =  𝐵  →  ( ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑣  =  𝐵  ∧  𝑤  =  𝐶 )  →  ( ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 25 | 21 24 | rabeqbidv | ⊢ ( ( 𝑣  =  𝐵  ∧  𝑤  =  𝐶 )  →  { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 26 | 18 19 25 | csbie2 | ⊢ ⦋ 𝐵  /  𝑣 ⦌ ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( +g ‘ 𝑟 )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 28 | 27 5 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( +g ‘ 𝑟 )  =   +  ) | 
						
							| 29 | 28 | oveqdr | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 𝑥  +  𝑦 ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( +g ‘ 𝑠 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 32 | 31 6 | eqtr4di | ⊢ ( 𝑠  =  𝑆  →  ( +g ‘ 𝑠 )  =   ✚  ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( +g ‘ 𝑠 )  =   ✚  ) | 
						
							| 34 | 33 | oveqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 35 | 30 34 | eqeq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 37 | 36 2 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =   ·  ) | 
						
							| 38 | 37 | oveqdr | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( .r ‘ 𝑠 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 41 | 40 3 | eqtr4di | ⊢ ( 𝑠  =  𝑆  →  ( .r ‘ 𝑠 )  =   ∗  ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( .r ‘ 𝑠 )  =   ∗  ) | 
						
							| 43 | 42 | oveqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 44 | 39 43 | eqeq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 45 | 35 44 | anbi12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 46 | 45 | 2ralbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) ) ) | 
						
							| 47 | 46 | rabbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 48 | 26 47 | eqtrid | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ⦋ 𝐵  /  𝑣 ⦌ ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ⦋ 𝐵  /  𝑣 ⦌ ⦋ 𝐶  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 50 | 17 49 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) }  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 51 |  | simpl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  𝑅  ∈  Rng ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  𝑆  ∈  Rng ) | 
						
							| 53 |  | ovex | ⊢ ( 𝐶  ↑m  𝐵 )  ∈  V | 
						
							| 54 | 53 | rabex | ⊢ { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) }  ∈  V | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) }  ∈  V ) | 
						
							| 56 | 8 50 51 52 55 | ovmpod | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝑅  RngHom  𝑆 )  =  { 𝑓  ∈  ( 𝐶  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ✚  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) |