| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 3 | 1 2 | isrnghmmul | ⊢ ( ℎ  ∈  ( 𝑅  RngHom  𝑆 )  ↔  ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( ℎ  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ℎ  ∈  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 4 |  | elin | ⊢ ( ℎ  ∈  ( ( 𝑅  GrpHom  𝑆 )  ∩  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) )  ↔  ( ℎ  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ℎ  ∈  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) ) | 
						
							| 5 |  | ibar | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( ℎ  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ℎ  ∈  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) )  ↔  ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( ℎ  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ℎ  ∈  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) ) ) ) | 
						
							| 6 | 4 5 | bitr2id | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( ℎ  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ℎ  ∈  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) )  ↔  ℎ  ∈  ( ( 𝑅  GrpHom  𝑆 )  ∩  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 7 | 3 6 | bitrid | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ℎ  ∈  ( 𝑅  RngHom  𝑆 )  ↔  ℎ  ∈  ( ( 𝑅  GrpHom  𝑆 )  ∩  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 8 | 7 | eqrdv | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝑅  RngHom  𝑆 )  =  ( ( 𝑅  GrpHom  𝑆 )  ∩  ( ( mulGrp ‘ 𝑅 )  MgmHom  ( mulGrp ‘ 𝑆 ) ) ) ) |