| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngidpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
rngidpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
rngidpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 6 |
4 5
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 7 |
1 6
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 8 |
|
eqid |
⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 10 |
8 9
|
mgpbas |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) |
| 11 |
2 10
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 13 |
4 12
|
mgpplusg |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 14 |
13
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
| 16 |
8 15
|
mgpplusg |
⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 17 |
16
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) |
| 18 |
3 14 17
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) ) |
| 19 |
7 11 18
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐿 ) ) ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 21 |
4 20
|
ringidval |
⊢ ( 1r ‘ 𝐾 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 22 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
| 23 |
8 22
|
ringidval |
⊢ ( 1r ‘ 𝐿 ) = ( 0g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 24 |
19 21 23
|
3eqtr4g |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |