| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngisom1.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 2 |
|
rngisom1.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 3 |
|
rngisom1.t |
⊢ · = ( .r ‘ 𝑆 ) |
| 4 |
|
rngimcnv |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
2 5
|
rngimrnghm |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 10 |
1 2
|
rngisomfv1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 11 |
10
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 15 |
2 3 14
|
rnghmmul |
⊢ ( ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 16 |
9 12 13 15
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) ) = ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 18 |
5 2
|
rngimf1o |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ) |
| 19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ) |
| 20 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ Rng ) |
| 21 |
2 3
|
rngcl |
⊢ ( ( 𝑆 ∈ Rng ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) · 𝑥 ) ∈ 𝐵 ) |
| 22 |
20 12 13 21
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) · 𝑥 ) ∈ 𝐵 ) |
| 23 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) ) = ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) |
| 24 |
19 22 23
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) ) = ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) |
| 25 |
5 1
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
19 26
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) |
| 29 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) = 1 ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) = 1 ) |
| 31 |
30
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) = ( 1 ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 32 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 33 |
2 5
|
rngimf1o |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) → ◡ 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑅 ) ) |
| 34 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑅 ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 36 |
4 35
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 37 |
36
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 38 |
37
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 |
5 14 1 32 38
|
ringlidmd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 40 |
31 39
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 42 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 43 |
19 42
|
sylan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 44 |
41 43
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) = 𝑥 ) |
| 45 |
17 24 44
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ) |
| 46 |
4
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) ) |
| 47 |
46 6
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 49 |
2 3 14
|
rnghmmul |
⊢ ( ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ∧ 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 50 |
48 13 12 49
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 51 |
30
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 52 |
5 14 1 32 38
|
ringridmd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 53 |
50 51 52
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 55 |
2 3
|
rngcl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ) → ( 𝑥 · ( 𝐹 ‘ 1 ) ) ∈ 𝐵 ) |
| 56 |
20 13 12 55
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · ( 𝐹 ‘ 1 ) ) ∈ 𝐵 ) |
| 57 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) ) = ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) |
| 58 |
19 56 57
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) ) = ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) |
| 59 |
54 58 43
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) |
| 60 |
45 59
|
jca |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) ) |
| 61 |
60
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) ) |