Step |
Hyp |
Ref |
Expression |
1 |
|
rngisom1.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
2 |
|
rngisom1.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 2
|
rngimf1o |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ) |
5 |
|
f1of |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
8 |
3 1
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
10 |
7 9
|
ffvelcdmd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |