Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝑆 ∈ Rng ) |
2 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
4 |
2 3
|
rngisomfv1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ↔ ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ↔ ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
14 |
2 3 13
|
rngisom1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) |
15 |
5 12 14
|
rspcedvd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∃ 𝑖 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ) |
16 |
3 13
|
isringrng |
⊢ ( 𝑆 ∈ Ring ↔ ( 𝑆 ∈ Rng ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ) ) |
17 |
1 15 16
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝑆 ∈ Ring ) |