Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
3 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
4 |
1 2 3
|
rngisom1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) |
5 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
6 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
7 2
|
rngimf1o |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
9 |
|
f1of |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
12 |
7 1
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
14 |
11 13
|
ffvelcdmd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) ) |
17 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ↔ ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
20 |
19 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ↔ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ↔ ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) ) |
22 |
21
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) ) |
24 |
|
simpl |
⊢ ( ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) |
25 |
23 24
|
syl6 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) ) |
26 |
25
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) |
28 |
23 27
|
syl6 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) |
29 |
28
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) |
30 |
5 6 15 26 29
|
ringurd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
31 |
4 30
|
mpdan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
32 |
31
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 1r ‘ 𝑆 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |