Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidl0.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
rnglidl0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 2
|
rng0cl |
⊢ ( 𝑅 ∈ Rng → 0 ∈ ( Base ‘ 𝑅 ) ) |
5 |
4
|
snssd |
⊢ ( 𝑅 ∈ Rng → { 0 } ⊆ ( Base ‘ 𝑅 ) ) |
6 |
2
|
fvexi |
⊢ 0 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝑅 ∈ Rng → 0 ∈ V ) |
8 |
7
|
snn0d |
⊢ ( 𝑅 ∈ Rng → { 0 } ≠ ∅ ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
10 |
3 9 2
|
rngrz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
11 |
10
|
oveq1d |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
12 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
13 |
3 2
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
15 |
3 14 2
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
16 |
12 13 15
|
syl2anc2 |
⊢ ( 𝑅 ∈ Rng → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
18 |
11 17
|
eqtrd |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = 0 ) |
19 |
6
|
elsn2 |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = 0 ) |
20 |
18 19
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
21 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑦 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑦 = 0 → ( ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
25 |
6 24
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
26 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝑧 = 0 → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) ) |
28 |
6 27
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
29 |
25 28
|
bitri |
⊢ ( ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
30 |
20 29
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
31 |
30
|
ralrimiva |
⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
32 |
1 3 14 9
|
islidl |
⊢ ( { 0 } ∈ 𝑈 ↔ ( { 0 } ⊆ ( Base ‘ 𝑅 ) ∧ { 0 } ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
33 |
5 8 31 32
|
syl3anbrc |
⊢ ( 𝑅 ∈ Rng → { 0 } ∈ 𝑈 ) |