| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidl0.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | rnglidl1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 2 | eqimssi | ⊢ 𝐵  ⊆  ( Base ‘ 𝑅 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑅  ∈  Rng  →  𝐵  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 6 | 2 | grpbn0 | ⊢ ( 𝑅  ∈  Grp  →  𝐵  ≠  ∅ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑅  ∈  Rng  →  𝐵  ≠  ∅ ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 9 | 5 | adantr | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑅  ∈  Grp ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑅  ∈  Rng ) | 
						
							| 11 | 2 | eqcomi | ⊢ ( Base ‘ 𝑅 )  =  𝐵 | 
						
							| 12 | 11 | eleq2i | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑅 )  ↔  𝑥  ∈  𝐵 ) | 
						
							| 13 | 12 | biimpi | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑅 )  →  𝑥  ∈  𝐵 ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 16 |  | simpr2 | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 17 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 18 | 2 17 | rngcl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 19 | 10 15 16 18 | syl3anc | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 20 |  | simpr3 | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 21 | 2 8 9 19 20 | grpcld | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 22 | 21 | ralrimivvva | ⊢ ( 𝑅  ∈  Rng  →  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 24 | 1 23 8 17 | islidl | ⊢ ( 𝐵  ∈  𝑈  ↔  ( 𝐵  ⊆  ( Base ‘ 𝑅 )  ∧  𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 )  ∈  𝐵 ) ) | 
						
							| 25 | 4 7 22 24 | syl3anbrc | ⊢ ( 𝑅  ∈  Rng  →  𝐵  ∈  𝑈 ) |