Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlmcl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
rnglidlmcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
rnglidlmcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
rnglidlmcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
6 |
4 2 5 3
|
islidl |
⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑎 ) = ( 𝑋 · 𝑎 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑎 = 𝑌 → ( 𝑋 · 𝑎 ) = ( 𝑋 · 𝑌 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑎 = 𝑌 → ( ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑎 = 𝑌 → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
15 |
10 14
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑏 = 0 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑏 = 0 → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ) ) |
19 |
18
|
rspcv |
⊢ ( 0 ∈ 𝐼 → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ) ) |
21 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → 𝑅 ∈ Grp ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → 𝑅 ∈ Grp ) |
24 |
23
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑅 ∈ Grp ) |
25 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑅 ∈ Rng ) |
26 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑋 ∈ 𝐵 ) |
27 |
|
ssel |
⊢ ( 𝐼 ⊆ 𝐵 → ( 𝑌 ∈ 𝐼 → 𝑌 ∈ 𝐵 ) ) |
28 |
27
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑌 ∈ 𝐼 → 𝑌 ∈ 𝐵 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( 𝑌 ∈ 𝐼 → 𝑌 ∈ 𝐵 ) ) |
30 |
29
|
adantld |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → 𝑌 ∈ 𝐵 ) ) |
31 |
30
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑌 ∈ 𝐵 ) |
32 |
2 3
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
33 |
25 26 31 32
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
34 |
2 5 1 24 33
|
grpridd |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) = ( 𝑋 · 𝑌 ) ) |
35 |
34
|
eleq1d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 ↔ ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
36 |
35
|
biimpd |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 0 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
38 |
20 37
|
syl5d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
39 |
38
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ∀ 𝑏 ∈ 𝐼 ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
40 |
16 39
|
syld |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) |
41 |
40
|
ex |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
42 |
41
|
com23 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 0 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) |
43 |
42
|
ex |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 0 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
44 |
43
|
com23 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
45 |
44
|
3exp |
⊢ ( 𝑅 ∈ Rng → ( 𝐼 ⊆ 𝐵 → ( 𝐼 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) ) ) |
46 |
45
|
3impd |
⊢ ( 𝑅 ∈ Rng → ( ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
47 |
6 46
|
biimtrid |
⊢ ( 𝑅 ∈ Rng → ( 𝐼 ∈ 𝑈 → ( 0 ∈ 𝐼 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) ) ) ) |
48 |
47
|
3imp1 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |