| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidlabl.l | ⊢ 𝐿  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | rnglidlabl.i | ⊢ 𝐼  =  ( 𝑅  ↾s  𝑈 ) | 
						
							| 3 |  | rnglidlabl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  𝑅  ∈  Rng ) | 
						
							| 5 | 1 2 | lidlbas | ⊢ ( 𝑈  ∈  𝐿  →  ( Base ‘ 𝐼 )  =  𝑈 ) | 
						
							| 6 |  | eleq1a | ⊢ ( 𝑈  ∈  𝐿  →  ( ( Base ‘ 𝐼 )  =  𝑈  →  ( Base ‘ 𝐼 )  ∈  𝐿 ) ) | 
						
							| 7 | 5 6 | mpd | ⊢ ( 𝑈  ∈  𝐿  →  ( Base ‘ 𝐼 )  ∈  𝐿 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( Base ‘ 𝐼 )  ∈  𝐿 ) | 
						
							| 9 | 5 | eqcomd | ⊢ ( 𝑈  ∈  𝐿  →  𝑈  =  ( Base ‘ 𝐼 ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑈  ∈  𝐿  →  (  0   ∈  𝑈  ↔   0   ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 11 | 10 | biimpa | ⊢ ( ( 𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →   0   ∈  ( Base ‘ 𝐼 ) ) | 
						
							| 12 | 11 | 3adant1 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →   0   ∈  ( Base ‘ 𝐼 ) ) | 
						
							| 13 | 4 8 12 | 3jca | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( 𝑅  ∈  Rng  ∧  ( Base ‘ 𝐼 )  ∈  𝐿  ∧   0   ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 14 | 1 2 | lidlssbas | ⊢ ( 𝑈  ∈  𝐿  →  ( Base ‘ 𝐼 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 14 | sseld | ⊢ ( 𝑈  ∈  𝐿  →  ( 𝑎  ∈  ( Base ‘ 𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( 𝑎  ∈  ( Base ‘ 𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 17 | 16 | anim1d | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( ( 𝑎  ∈  ( Base ‘ 𝐼 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) )  →  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  ∧  ( 𝑎  ∈  ( Base ‘ 𝐼 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) )  →  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 20 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 21 | 3 19 20 1 | rnglidlmcl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  ( Base ‘ 𝐼 )  ∈  𝐿  ∧   0   ∈  ( Base ‘ 𝐼 ) )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) | 
						
							| 22 | 13 18 21 | syl2an2r | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  ∧  ( 𝑎  ∈  ( Base ‘ 𝐼 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) | 
						
							| 23 | 2 20 | ressmulr | ⊢ ( 𝑈  ∈  𝐿  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝐼 ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝑈  ∈  𝐿  →  ( .r ‘ 𝐼 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 25 | 24 | oveqd | ⊢ ( 𝑈  ∈  𝐿  →  ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑈  ∈  𝐿  →  ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 )  ↔  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 )  ↔  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  ∧  ( 𝑎  ∈  ( Base ‘ 𝐼 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) )  →  ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 )  ↔  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 29 | 22 28 | mpbird | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  ∧  ( 𝑎  ∈  ( Base ‘ 𝐼 )  ∧  𝑏  ∈  ( Base ‘ 𝐼 ) ) )  →  ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) | 
						
							| 30 | 29 | ralrimivva | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ∀ 𝑎  ∈  ( Base ‘ 𝐼 ) ∀ 𝑏  ∈  ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) | 
						
							| 31 |  | fvex | ⊢ ( mulGrp ‘ 𝐼 )  ∈  V | 
						
							| 32 |  | eqid | ⊢ ( mulGrp ‘ 𝐼 )  =  ( mulGrp ‘ 𝐼 ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝐼 )  =  ( Base ‘ 𝐼 ) | 
						
							| 34 | 32 33 | mgpbas | ⊢ ( Base ‘ 𝐼 )  =  ( Base ‘ ( mulGrp ‘ 𝐼 ) ) | 
						
							| 35 |  | eqid | ⊢ ( .r ‘ 𝐼 )  =  ( .r ‘ 𝐼 ) | 
						
							| 36 | 32 35 | mgpplusg | ⊢ ( .r ‘ 𝐼 )  =  ( +g ‘ ( mulGrp ‘ 𝐼 ) ) | 
						
							| 37 | 34 36 | ismgm | ⊢ ( ( mulGrp ‘ 𝐼 )  ∈  V  →  ( ( mulGrp ‘ 𝐼 )  ∈  Mgm  ↔  ∀ 𝑎  ∈  ( Base ‘ 𝐼 ) ∀ 𝑏  ∈  ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 38 | 31 37 | mp1i | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( ( mulGrp ‘ 𝐼 )  ∈  Mgm  ↔  ∀ 𝑎  ∈  ( Base ‘ 𝐼 ) ∀ 𝑏  ∈  ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 )  ∈  ( Base ‘ 𝐼 ) ) ) | 
						
							| 39 | 30 38 | mpbird | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑈  ∈  𝐿  ∧   0   ∈  𝑈 )  →  ( mulGrp ‘ 𝐼 )  ∈  Mgm ) |