Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
2 |
|
rnglidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
3 |
|
rnglidlabl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
1 2 3
|
rnglidlmmgm |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
6 |
5
|
rngmgp |
⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
8 |
1 2
|
lidlssbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
9 |
8
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
10 |
8
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
11 |
8
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
12 |
9 10 11
|
3anim123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
5 15
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
18 |
5 17
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
19 |
16 18
|
sgrpass |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
20 |
7 14 19
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
21 |
2 17
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
22 |
21
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
23 |
22
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
24 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑐 = 𝑐 ) |
25 |
22 23 24
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) ) |
26 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑎 = 𝑎 ) |
27 |
22
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) |
28 |
22 26 27
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
29 |
25 28
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
32 |
20 31
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) |
33 |
32
|
ralrimivvva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) |
34 |
|
eqid |
⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
36 |
34 35
|
mgpbas |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
38 |
34 37
|
mgpplusg |
⊢ ( .r ‘ 𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) ) |
39 |
36 38
|
issgrp |
⊢ ( ( mulGrp ‘ 𝐼 ) ∈ Smgrp ↔ ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
40 |
4 33 39
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |