Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
2 |
|
rnglidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
3 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
5 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) |
6 |
2
|
subgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
8
|
subg0cl |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑈 ) |
10 |
1 2 8
|
rnglidlmsgrp |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |
11 |
9 10
|
syl3an3 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |
12 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑅 ∈ Rng ) |
13 |
1 2
|
lidlssbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
14 |
13
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
15 |
13
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
16 |
13
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
17 |
14 15 16
|
3anim123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
19 |
18
|
imp |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
23 |
20 21 22
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
24 |
12 19 23
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
25 |
20 21 22
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
26 |
12 19 25
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
27 |
2 22
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
28 |
27
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
29 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑎 = 𝑎 ) |
30 |
2 21
|
ressplusg |
⊢ ( 𝑈 ∈ 𝐿 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐼 ) ) |
31 |
30
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( +g ‘ 𝐼 ) = ( +g ‘ 𝑅 ) ) |
32 |
31
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) |
33 |
28 29 32
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) ) |
34 |
28
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
35 |
28
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) |
36 |
31 34 35
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
37 |
33 36
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
38 |
31
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
39 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑐 = 𝑐 ) |
40 |
28 38 39
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) ) |
41 |
28
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) |
42 |
31 35 41
|
oveq123d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
43 |
40 42
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
44 |
37 43
|
anbi12d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
45 |
44
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
47 |
24 26 46
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
48 |
47
|
ralrimivvva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
50 |
|
eqid |
⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) |
51 |
|
eqid |
⊢ ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) |
52 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
53 |
49 50 51 52
|
isrng |
⊢ ( 𝐼 ∈ Rng ↔ ( 𝐼 ∈ Abel ∧ ( mulGrp ‘ 𝐼 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) ) |
54 |
7 11 48 53
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Rng ) |