| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngneglmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | rngneglmul.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | rngneglmul.n | ⊢ 𝑁  =  ( invg ‘ 𝑅 ) | 
						
							| 4 |  | rngneglmul.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 5 |  | rngneglmul.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | rngneglmul.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 9 | 1 3 8 6 | grpinvcld | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 10 | 1 2 3 4 5 9 | rngmneg1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) )  =  ( 𝑁 ‘ ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 | rngmneg2 | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  =  ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) )  =  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) ) ) ) | 
						
							| 13 | 1 2 | rngcl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 14 | 4 5 6 13 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 15 | 1 3 | grpinvinv | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑋  ·  𝑌 )  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) ) )  =  ( 𝑋  ·  𝑌 ) ) | 
						
							| 16 | 8 14 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) ) )  =  ( 𝑋  ·  𝑌 ) ) | 
						
							| 17 | 10 12 16 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) )  =  ( 𝑋  ·  𝑌 ) ) |