Step |
Hyp |
Ref |
Expression |
1 |
|
r19.12 |
⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
2 |
|
simpl |
⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
3 |
2
|
eqcomd |
⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → 𝑥 = ( 𝑢 𝐺 𝑥 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑢 𝐺 𝑦 ) = ( 𝑢 𝐺 𝑥 ) ) |
5 |
4
|
rspceeqv |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 = ( 𝑢 𝐺 𝑥 ) ) → ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) |
6 |
5
|
ex |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 = ( 𝑢 𝐺 𝑥 ) → ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) ) |
7 |
3 6
|
syl5 |
⊢ ( 𝑥 ∈ 𝑋 → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) ) |
8 |
7
|
reximdv |
⊢ ( 𝑥 ∈ 𝑋 → ( ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∃ 𝑢 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) ) |
9 |
8
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) |
10 |
1 9
|
syl |
⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) |
11 |
10
|
anim2i |
⊢ ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) ) |
12 |
|
foov |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑢 𝐺 𝑦 ) ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
14 |
|
forn |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 → ran 𝐺 = 𝑋 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) → ran 𝐺 = 𝑋 ) |