| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.12 | ⊢ ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  𝑥  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑢 𝐺 𝑦 )  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 5 | 4 | rspceeqv | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑥  =  ( 𝑢 𝐺 𝑥 ) )  →  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝑥  ∈  𝑋  →  ( 𝑥  =  ( 𝑢 𝐺 𝑥 )  →  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) ) | 
						
							| 7 | 3 6 | syl5 | ⊢ ( 𝑥  ∈  𝑋  →  ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) ) | 
						
							| 8 | 7 | reximdv | ⊢ ( 𝑥  ∈  𝑋  →  ( ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∃ 𝑢  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) ) | 
						
							| 9 | 8 | ralimia | ⊢ ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) | 
						
							| 10 | 1 9 | syl | ⊢ ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) | 
						
							| 11 | 10 | anim2i | ⊢ ( ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) )  →  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) ) | 
						
							| 12 |  | foov | ⊢ ( 𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑢 𝐺 𝑦 ) ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) )  →  𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋 ) | 
						
							| 14 |  | forn | ⊢ ( 𝐺 : ( 𝑋  ×  𝑋 ) –onto→ 𝑋  →  ran  𝐺  =  𝑋 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) )  →  ran  𝐺  =  𝑋 ) |