| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngneglmul.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rngneglmul.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
rngneglmul.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 4 |
|
rngneglmul.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 5 |
|
rngneglmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
rngneglmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 9 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 |
1 7 8 3 10 5
|
grprinvd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) = ( ( 0g ‘ 𝑅 ) · 𝑌 ) ) |
| 13 |
1 2 8
|
rnglz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) · 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 14 |
4 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) · 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 15 |
12 14
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
1 2
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 17 |
4 5 6 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 18 |
1 3 10 5
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 |
1 2
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ∈ 𝐵 ) |
| 20 |
4 18 6 19
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ∈ 𝐵 ) |
| 21 |
1 7 8 3
|
grpinvid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ↔ ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 22 |
10 17 20 21
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ↔ ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 23 |
1 7 2
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) = ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) ) |
| 24 |
23
|
eqcomd |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) = ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) ) |
| 25 |
4 5 18 6 24
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) = ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) = ( 0g ‘ 𝑅 ) ) ) |
| 27 |
22 26
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ↔ ( ( 𝑋 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑋 ) ) · 𝑌 ) = ( 0g ‘ 𝑅 ) ) ) |
| 28 |
15 27
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · 𝑌 ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |