| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngneglmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | rngneglmul.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | rngneglmul.n | ⊢ 𝑁  =  ( invg ‘ 𝑅 ) | 
						
							| 4 |  | rngneglmul.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 5 |  | rngneglmul.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | rngneglmul.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 11 | 1 7 8 3 10 6 | grplinvd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) )  =  ( 𝑋  ·  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 13 | 1 2 8 | rngrz | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ·  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 15 | 12 14 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 16 | 1 2 | rngcl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 17 | 4 5 6 16 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 18 | 1 3 10 6 | grpinvcld | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 19 | 1 2 | rngcl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑋  ∈  𝐵  ∧  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 20 | 4 5 18 19 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 21 | 1 7 8 3 | grpinvid2 | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑋  ·  𝑌 )  ∈  𝐵  ∧  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  ∈  𝐵 )  →  ( ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  ↔  ( ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 22 | 10 17 20 21 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  ↔  ( ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 23 | 1 7 2 | rngdi | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑁 ‘ 𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) )  =  ( ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑁 ‘ 𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) )  =  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) ) | 
						
							| 25 | 4 5 18 6 24 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) )  =  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) )  =  ( 0g ‘ 𝑅 )  ↔  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 27 | 22 26 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  ↔  ( 𝑋  ·  ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 28 | 15 27 | mpbird | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 𝑁 ‘ 𝑌 ) )  =  ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) ) ) |