Step |
Hyp |
Ref |
Expression |
1 |
|
ringi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ringi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ringi.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2 3
|
rngoid |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑥 ) = 𝐴 ) ) |
5 |
|
oveq12 |
⊢ ( ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝑥 𝐻 𝐴 ) = 𝐴 ) → ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) = ( 𝐴 𝐺 𝐴 ) ) |
6 |
5
|
anidms |
⊢ ( ( 𝑥 𝐻 𝐴 ) = 𝐴 → ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) = ( 𝐴 𝐺 𝐴 ) ) |
7 |
6
|
eqcomd |
⊢ ( ( 𝑥 𝐻 𝐴 ) = 𝐴 → ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ RingOps ) |
9 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
10 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
11 |
1 2 3
|
rngodir |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) |
12 |
8 9 9 10 11
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) ) |
14 |
7 13
|
syl5ibr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐻 𝐴 ) = 𝐴 → ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) |
15 |
14
|
adantrd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑥 ) = 𝐴 ) → ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) |
16 |
15
|
reximdva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐻 𝑥 ) = 𝐴 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) |
17 |
4 16
|
mpd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐴 𝐺 𝐴 ) = ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) |