| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | ringi.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | ringi.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 | 1 2 3 | rngoid | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑥  ∈  𝑋 ( ( 𝑥 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑥 )  =  𝐴 ) ) | 
						
							| 5 |  | oveq12 | ⊢ ( ( ( 𝑥 𝐻 𝐴 )  =  𝐴  ∧  ( 𝑥 𝐻 𝐴 )  =  𝐴 )  →  ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) )  =  ( 𝐴 𝐺 𝐴 ) ) | 
						
							| 6 | 5 | anidms | ⊢ ( ( 𝑥 𝐻 𝐴 )  =  𝐴  →  ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) )  =  ( 𝐴 𝐺 𝐴 ) ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( ( 𝑥 𝐻 𝐴 )  =  𝐴  →  ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝑅  ∈  RingOps ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 11 | 1 2 3 | rngodir | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 )  =  ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) | 
						
							| 12 | 8 9 9 10 11 | syl13anc | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 )  =  ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 )  ↔  ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐻 𝐴 ) 𝐺 ( 𝑥 𝐻 𝐴 ) ) ) ) | 
						
							| 14 | 7 13 | imbitrrid | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥 𝐻 𝐴 )  =  𝐴  →  ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) | 
						
							| 15 | 14 | adantrd | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑥 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑥 )  =  𝐴 )  →  ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) | 
						
							| 16 | 15 | reximdva | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  𝑋 ( ( 𝑥 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑥 )  =  𝐴 )  →  ∃ 𝑥  ∈  𝑋 ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) ) | 
						
							| 17 | 4 16 | mpd | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑥  ∈  𝑋 ( 𝐴 𝐺 𝐴 )  =  ( ( 𝑥 𝐺 𝑥 ) 𝐻 𝐴 ) ) |