Description: Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringgcl.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
ringgcl.2 | ⊢ 𝑋 = ran 𝐺 | ||
Assertion | rngoa4 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgcl.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
2 | ringgcl.2 | ⊢ 𝑋 = ran 𝐺 | |
3 | 1 | rngoablo | ⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ AbelOp ) |
4 | 2 | ablo4 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
5 | 3 4 | syl3an1 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |