Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegcl.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringnegcl.2 | ⊢ 𝑋 = ran 𝐺 | ||
| ringnegcl.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| ringaddneg.4 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| Assertion | rngoaddneg2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑍 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringnegcl.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringnegcl.2 | ⊢ 𝑋 = ran 𝐺 | |
| 3 | ringnegcl.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 4 | ringaddneg.4 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 5 | 1 | rngogrpo | ⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) | 
| 6 | 2 4 3 | grpolinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑍 ) | 
| 7 | 5 6 | sylan | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑍 ) |