Step |
Hyp |
Ref |
Expression |
1 |
|
ringi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ringi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ringi.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2 3
|
rngoi |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
6 |
5
|
simpld |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
7 |
|
simp2 |
⊢ ( ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
9 |
8
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 𝑦 ) = ( 𝐴 𝐻 𝑦 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 𝑧 ) = ( 𝐴 𝐻 𝑧 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) = ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) |
14 |
10 13
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ↔ ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐺 𝑧 ) = ( 𝐵 𝐺 𝑧 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐻 𝑦 ) = ( 𝐴 𝐻 𝐵 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ↔ ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 𝐺 𝑧 ) = ( 𝐵 𝐺 𝐶 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐻 𝑧 ) = ( 𝐴 𝐻 𝐶 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) |
24 |
21 23
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ↔ ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) ) |
25 |
14 19 24
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) ) |
26 |
9 25
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) ) |
27 |
6 26
|
mpan9 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) |