| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | ringi.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | ringi.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 | 1 2 3 | rngoi | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝐺  ∈  AbelOp  ∧  𝐻 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 )  ∧  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝑅  ∈  RingOps  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ∧  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝑅  ∈  RingOps  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) | 
						
							| 7 |  | simp2 | ⊢ ( ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 8 | 7 | ralimi | ⊢ ( ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  →  ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 9 | 8 | 2ralimi | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝐴 𝐻 𝑦 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐻 𝑧 )  =  ( 𝐴 𝐻 𝑧 ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  =  ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) | 
						
							| 14 | 10 13 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ↔  ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦 𝐺 𝑧 )  =  ( 𝐵 𝐺 𝑧 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐻 𝑦 )  =  ( 𝐴 𝐻 𝐵 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) | 
						
							| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐻 𝑦 ) 𝐺 ( 𝐴 𝐻 𝑧 ) )  ↔  ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐵 𝐺 𝑧 )  =  ( 𝐵 𝐺 𝐶 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴 𝐻 𝑧 )  =  ( 𝐴 𝐻 𝐶 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) | 
						
							| 24 | 21 23 | eqeq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝐻 ( 𝐵 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝑧 ) )  ↔  ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) ) | 
						
							| 25 | 14 19 24 | rspc3v | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  →  ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) ) | 
						
							| 26 | 9 25 | syl5 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  →  ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) ) | 
						
							| 27 | 6 26 | mpan9 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐻 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 𝐶 ) ) ) |