Step |
Hyp |
Ref |
Expression |
1 |
|
rnghom0.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
rnghom0.2 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
3 |
|
rnghom0.3 |
⊢ 𝐽 = ( 1st ‘ 𝑆 ) |
4 |
|
rnghom0.4 |
⊢ 𝑊 = ( GId ‘ 𝐽 ) |
5 |
1
|
rngogrpo |
⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → 𝐺 ∈ GrpOp ) |
7 |
3
|
rngogrpo |
⊢ ( 𝑆 ∈ RingOps → 𝐽 ∈ GrpOp ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → 𝐽 ∈ GrpOp ) |
9 |
1 3
|
rngogrphom |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) |
10 |
2 4
|
ghomidOLD |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) → ( 𝐹 ‘ 𝑍 ) = 𝑊 ) |
11 |
6 8 9 10
|
syl3anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → ( 𝐹 ‘ 𝑍 ) = 𝑊 ) |