Step |
Hyp |
Ref |
Expression |
1 |
|
ringi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ringi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ringi.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2
|
opeq12i |
⊢ 〈 𝐺 , 𝐻 〉 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 |
5 |
|
relrngo |
⊢ Rel RingOps |
6 |
|
1st2nd |
⊢ ( ( Rel RingOps ∧ 𝑅 ∈ RingOps ) → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
7 |
5 6
|
mpan |
⊢ ( 𝑅 ∈ RingOps → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
8 |
4 7
|
eqtr4id |
⊢ ( 𝑅 ∈ RingOps → 〈 𝐺 , 𝐻 〉 = 𝑅 ) |
9 |
|
id |
⊢ ( 𝑅 ∈ RingOps → 𝑅 ∈ RingOps ) |
10 |
8 9
|
eqeltrd |
⊢ ( 𝑅 ∈ RingOps → 〈 𝐺 , 𝐻 〉 ∈ RingOps ) |
11 |
2
|
fvexi |
⊢ 𝐻 ∈ V |
12 |
3
|
isrngo |
⊢ ( 𝐻 ∈ V → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
14 |
10 13
|
sylib |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |