| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringi.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | ringi.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | ringi.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 | 1 2 3 | rngoi | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝐺  ∈  AbelOp  ∧  𝐻 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 )  ∧  ( ∀ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑢 𝐻 𝑥 ) 𝐻 𝑦 )  =  ( 𝑢 𝐻 ( 𝑥 𝐻 𝑦 ) )  ∧  ( 𝑢 𝐻 ( 𝑥 𝐺 𝑦 ) )  =  ( ( 𝑢 𝐻 𝑥 ) 𝐺 ( 𝑢 𝐻 𝑦 ) )  ∧  ( ( 𝑢 𝐺 𝑥 ) 𝐻 𝑦 )  =  ( ( 𝑢 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑦 ) ) )  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 ) ) ) ) | 
						
							| 5 | 4 | simprrd | ⊢ ( 𝑅  ∈  RingOps  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 ) ) | 
						
							| 6 |  | r19.12 | ⊢ ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑅  ∈  RingOps  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑢 𝐻 𝑥 )  =  ( 𝑢 𝐻 𝐴 ) ) | 
						
							| 9 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ↔  ( 𝑢 𝐻 𝐴 )  =  𝐴 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐻 𝑢 )  =  ( 𝐴 𝐻 𝑢 ) ) | 
						
							| 12 | 11 9 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐻 𝑢 )  =  𝑥  ↔  ( 𝐴 𝐻 𝑢 )  =  𝐴 ) ) | 
						
							| 13 | 10 12 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 )  ↔  ( ( 𝑢 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑢 )  =  𝐴 ) ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 )  ↔  ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑢 )  =  𝐴 ) ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐻 𝑢 )  =  𝑥 )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑢 )  =  𝐴 ) ) | 
						
							| 16 | 7 15 | sylan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑢  ∈  𝑋 ( ( 𝑢 𝐻 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐻 𝑢 )  =  𝐴 ) ) |