Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisoval.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| rngisoval.2 | ⊢ 𝑋 = ran 𝐺 | ||
| rngisoval.3 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | ||
| rngisoval.4 | ⊢ 𝑌 = ran 𝐽 | ||
| Assertion | rngoiso1o | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | rngisoval.2 | ⊢ 𝑋 = ran 𝐺 | |
| 3 | rngisoval.3 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | |
| 4 | rngisoval.4 | ⊢ 𝑌 = ran 𝐽 | |
| 5 | 1 2 3 4 | isrngoiso | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) ) |
| 6 | 5 | simplbda | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 7 | 6 | 3impa | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |