| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngoisohom |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) |
| 2 |
1
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) |
| 3 |
2
|
3adantl3 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) |
| 4 |
|
rngoisohom |
⊢ ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) |
| 6 |
5
|
3adantl1 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) |
| 7 |
3 6
|
anim12dan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) ) |
| 8 |
|
rngohomco |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ) |
| 9 |
7 8
|
syldan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ) |
| 10 |
|
eqid |
⊢ ( 1st ‘ 𝑆 ) = ( 1st ‘ 𝑆 ) |
| 11 |
|
eqid |
⊢ ran ( 1st ‘ 𝑆 ) = ran ( 1st ‘ 𝑆 ) |
| 12 |
|
eqid |
⊢ ( 1st ‘ 𝑇 ) = ( 1st ‘ 𝑇 ) |
| 13 |
|
eqid |
⊢ ran ( 1st ‘ 𝑇 ) = ran ( 1st ‘ 𝑇 ) |
| 14 |
10 11 12 13
|
rngoiso1o |
⊢ ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 15 |
14
|
3expa |
⊢ ( ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 16 |
15
|
3adantl1 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 17 |
16
|
adantrl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 18 |
|
eqid |
⊢ ( 1st ‘ 𝑅 ) = ( 1st ‘ 𝑅 ) |
| 19 |
|
eqid |
⊢ ran ( 1st ‘ 𝑅 ) = ran ( 1st ‘ 𝑅 ) |
| 20 |
18 19 10 11
|
rngoiso1o |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 21 |
20
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 22 |
21
|
3adantl3 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 23 |
22
|
adantrr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 24 |
|
f1oco |
⊢ ( ( 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ∧ 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) → ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 25 |
17 23 24
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 26 |
18 19 12 13
|
isrngoiso |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ∧ ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) ) ) |
| 27 |
26
|
3adant2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ∧ ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ∧ ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) ) ) |
| 29 |
9 25 28
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ) |