| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringlz.1 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 2 |  | ringlz.2 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 3 |  | ringlz.3 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 4 |  | ringlz.4 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 5 | 3 | rngogrpo | ⊢ ( 𝑅  ∈  RingOps  →  𝐺  ∈  GrpOp ) | 
						
							| 6 | 2 1 | grpoidcl | ⊢ ( 𝐺  ∈  GrpOp  →  𝑍  ∈  𝑋 ) | 
						
							| 7 | 2 1 | grpolid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑍  ∈  𝑋 )  →  ( 𝑍 𝐺 𝑍 )  =  𝑍 ) | 
						
							| 8 | 5 6 7 | syl2anc2 | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑍 𝐺 𝑍 )  =  𝑍 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑍 𝐺 𝑍 )  =  𝑍 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑍 𝐺 𝑍 ) 𝐻 𝐴 )  =  ( 𝑍 𝐻 𝐴 ) ) | 
						
							| 11 | 3 2 1 | rngo0cl | ⊢ ( 𝑅  ∈  RingOps  →  𝑍  ∈  𝑋 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  𝑍  ∈  𝑋 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 14 | 12 12 13 | 3jca | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑍  ∈  𝑋  ∧  𝑍  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 15 | 3 4 2 | rngodir | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑍  ∈  𝑋  ∧  𝑍  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑍 𝐺 𝑍 ) 𝐻 𝐴 )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) ) | 
						
							| 16 | 14 15 | syldan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑍 𝐺 𝑍 ) 𝐻 𝐴 )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) ) | 
						
							| 17 | 5 | adantr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  𝐺  ∈  GrpOp ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  𝑅  ∈  RingOps ) | 
						
							| 19 | 3 4 2 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑍  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑍 𝐻 𝐴 )  ∈  𝑋 ) | 
						
							| 20 | 18 12 13 19 | syl3anc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑍 𝐻 𝐴 )  ∈  𝑋 ) | 
						
							| 21 | 2 1 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑍 𝐻 𝐴 )  ∈  𝑋 )  →  ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 )  =  ( 𝑍 𝐻 𝐴 ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑍 𝐻 𝐴 )  ∈  𝑋 )  →  ( 𝑍 𝐻 𝐴 )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ) | 
						
							| 23 | 17 20 22 | syl2anc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑍 𝐻 𝐴 )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ) | 
						
							| 24 | 10 16 23 | 3eqtr3d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ) | 
						
							| 25 | 2 | grpolcan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( ( 𝑍 𝐻 𝐴 )  ∈  𝑋  ∧  𝑍  ∈  𝑋  ∧  ( 𝑍 𝐻 𝐴 )  ∈  𝑋 ) )  →  ( ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 )  ↔  ( 𝑍 𝐻 𝐴 )  =  𝑍 ) ) | 
						
							| 26 | 17 20 12 20 25 | syl13anc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) )  =  ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 )  ↔  ( 𝑍 𝐻 𝐴 )  =  𝑍 ) ) | 
						
							| 27 | 24 26 | mpbid | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑍 𝐻 𝐴 )  =  𝑍 ) |