Metamath Proof Explorer


Theorem rngonegcl

Description: A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1 𝐺 = ( 1st𝑅 )
ringnegcl.2 𝑋 = ran 𝐺
ringnegcl.3 𝑁 = ( inv ‘ 𝐺 )
Assertion rngonegcl ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 ringnegcl.1 𝐺 = ( 1st𝑅 )
2 ringnegcl.2 𝑋 = ran 𝐺
3 ringnegcl.3 𝑁 = ( inv ‘ 𝐺 )
4 1 rngogrpo ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp )
5 2 3 grpoinvcl ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ 𝑋 )
6 4 5 sylan ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ 𝑋 )