Metamath Proof Explorer


Theorem rngonegmn1l

Description: Negation in a ring is the same as left multiplication by -u 1 . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ringneg.1 𝐺 = ( 1st𝑅 )
ringneg.2 𝐻 = ( 2nd𝑅 )
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = ( inv ‘ 𝐺 )
ringneg.5 𝑈 = ( GId ‘ 𝐻 )
Assertion rngonegmn1l ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) = ( ( 𝑁𝑈 ) 𝐻 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ringneg.1 𝐺 = ( 1st𝑅 )
2 ringneg.2 𝐻 = ( 2nd𝑅 )
3 ringneg.3 𝑋 = ran 𝐺
4 ringneg.4 𝑁 = ( inv ‘ 𝐺 )
5 ringneg.5 𝑈 = ( GId ‘ 𝐻 )
6 1 rneqi ran 𝐺 = ran ( 1st𝑅 )
7 3 6 eqtri 𝑋 = ran ( 1st𝑅 )
8 7 2 5 rngo1cl ( 𝑅 ∈ RingOps → 𝑈𝑋 )
9 1 3 4 rngonegcl ( ( 𝑅 ∈ RingOps ∧ 𝑈𝑋 ) → ( 𝑁𝑈 ) ∈ 𝑋 )
10 8 9 mpdan ( 𝑅 ∈ RingOps → ( 𝑁𝑈 ) ∈ 𝑋 )
11 8 10 jca ( 𝑅 ∈ RingOps → ( 𝑈𝑋 ∧ ( 𝑁𝑈 ) ∈ 𝑋 ) )
12 1 2 3 rngodir ( ( 𝑅 ∈ RingOps ∧ ( 𝑈𝑋 ∧ ( 𝑁𝑈 ) ∈ 𝑋𝐴𝑋 ) ) → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) )
13 12 3exp2 ( 𝑅 ∈ RingOps → ( 𝑈𝑋 → ( ( 𝑁𝑈 ) ∈ 𝑋 → ( 𝐴𝑋 → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) ) ) ) )
14 13 imp42 ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑈𝑋 ∧ ( 𝑁𝑈 ) ∈ 𝑋 ) ) ∧ 𝐴𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) )
15 14 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( 𝑈𝑋 ∧ ( 𝑁𝑈 ) ∈ 𝑋 ) ) → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) )
16 11 15 mpidan ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) )
17 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
18 1 3 4 17 rngoaddneg1 ( ( 𝑅 ∈ RingOps ∧ 𝑈𝑋 ) → ( 𝑈 𝐺 ( 𝑁𝑈 ) ) = ( GId ‘ 𝐺 ) )
19 8 18 mpdan ( 𝑅 ∈ RingOps → ( 𝑈 𝐺 ( 𝑁𝑈 ) ) = ( GId ‘ 𝐺 ) )
20 19 adantr ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑈 𝐺 ( 𝑁𝑈 ) ) = ( GId ‘ 𝐺 ) )
21 20 oveq1d ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) )
22 17 3 1 2 rngolz ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) = ( GId ‘ 𝐺 ) )
23 21 22 eqtrd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁𝑈 ) ) 𝐻 𝐴 ) = ( GId ‘ 𝐺 ) )
24 2 7 5 rngolidm ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑈 𝐻 𝐴 ) = 𝐴 )
25 24 oveq1d ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) = ( 𝐴 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) )
26 16 23 25 3eqtr3rd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) )
27 1 2 3 rngocl ( ( 𝑅 ∈ RingOps ∧ ( 𝑁𝑈 ) ∈ 𝑋𝐴𝑋 ) → ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 )
28 27 3expa ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑁𝑈 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 )
29 28 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( 𝑁𝑈 ) ∈ 𝑋 ) → ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 )
30 10 29 mpidan ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 )
31 1 rngogrpo ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp )
32 3 17 4 grpoinvid1 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁𝐴 ) = ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) )
33 31 32 syl3an1 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁𝐴 ) = ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) )
34 30 33 mpd3an3 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) = ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 ( ( 𝑁𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) )
35 26 34 mpbird ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) = ( ( 𝑁𝑈 ) 𝐻 𝐴 ) )