Step |
Hyp |
Ref |
Expression |
1 |
|
ringneg.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ringneg.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ringneg.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
ringneg.4 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
5 |
|
ringneg.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
6 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
7 |
3 6
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
8 |
7 2 5
|
rngo1cl |
⊢ ( 𝑅 ∈ RingOps → 𝑈 ∈ 𝑋 ) |
9 |
1 3 4
|
rngonegcl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) |
10 |
8 9
|
mpdan |
⊢ ( 𝑅 ∈ RingOps → ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) |
12 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝑈 ∈ 𝑋 ) |
13 |
11 12
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ) ) |
14 |
1 2 3
|
rngodi |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) ) |
15 |
14
|
3exp2 |
⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 → ( 𝑈 ∈ 𝑋 → ( 𝐴 𝐻 ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) ) ) ) ) |
16 |
15
|
imp43 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) ) |
17 |
13 16
|
mpdan |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) ) |
18 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
19 |
1 3 4 18
|
rngoaddneg2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) = ( GId ‘ 𝐺 ) ) |
20 |
8 19
|
mpdan |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) = ( GId ‘ 𝐺 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) = ( GId ‘ 𝐺 ) ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) ) = ( 𝐴 𝐻 ( GId ‘ 𝐺 ) ) ) |
23 |
18 3 1 2
|
rngorz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( GId ‘ 𝐺 ) ) = ( GId ‘ 𝐺 ) ) |
24 |
22 23
|
eqtrd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( ( 𝑁 ‘ 𝑈 ) 𝐺 𝑈 ) ) = ( GId ‘ 𝐺 ) ) |
25 |
2 7 5
|
rngoridm |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 𝑈 ) = 𝐴 ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 𝐴 ) ) |
27 |
17 24 26
|
3eqtr3rd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
28 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) → ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ∈ 𝑋 ) |
29 |
11 28
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ∈ 𝑋 ) |
30 |
1
|
rngogrpo |
⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
31 |
3 18 4
|
grpoinvid2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ↔ ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ) |
32 |
30 31
|
syl3an1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ↔ ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ) |
33 |
29 32
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ↔ ( ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ) |
34 |
27 33
|
mpbird |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐻 ( 𝑁 ‘ 𝑈 ) ) ) |