Metamath Proof Explorer


Theorem rngonegmn1r

Description: Negation in a ring is the same as right multiplication by -u 1 . (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringneg.1 𝐺 = ( 1st𝑅 )
ringneg.2 𝐻 = ( 2nd𝑅 )
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = ( inv ‘ 𝐺 )
ringneg.5 𝑈 = ( GId ‘ 𝐻 )
Assertion rngonegmn1r ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) = ( 𝐴 𝐻 ( 𝑁𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 ringneg.1 𝐺 = ( 1st𝑅 )
2 ringneg.2 𝐻 = ( 2nd𝑅 )
3 ringneg.3 𝑋 = ran 𝐺
4 ringneg.4 𝑁 = ( inv ‘ 𝐺 )
5 ringneg.5 𝑈 = ( GId ‘ 𝐻 )
6 1 rneqi ran 𝐺 = ran ( 1st𝑅 )
7 3 6 eqtri 𝑋 = ran ( 1st𝑅 )
8 7 2 5 rngo1cl ( 𝑅 ∈ RingOps → 𝑈𝑋 )
9 1 3 4 rngonegcl ( ( 𝑅 ∈ RingOps ∧ 𝑈𝑋 ) → ( 𝑁𝑈 ) ∈ 𝑋 )
10 8 9 mpdan ( 𝑅 ∈ RingOps → ( 𝑁𝑈 ) ∈ 𝑋 )
11 10 adantr ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝑈 ) ∈ 𝑋 )
12 8 adantr ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → 𝑈𝑋 )
13 11 12 jca ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑁𝑈 ) ∈ 𝑋𝑈𝑋 ) )
14 1 2 3 rngodi ( ( 𝑅 ∈ RingOps ∧ ( 𝐴𝑋 ∧ ( 𝑁𝑈 ) ∈ 𝑋𝑈𝑋 ) ) → ( 𝐴 𝐻 ( ( 𝑁𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) )
15 14 3exp2 ( 𝑅 ∈ RingOps → ( 𝐴𝑋 → ( ( 𝑁𝑈 ) ∈ 𝑋 → ( 𝑈𝑋 → ( 𝐴 𝐻 ( ( 𝑁𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) ) ) ) )
16 15 imp43 ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( ( 𝑁𝑈 ) ∈ 𝑋𝑈𝑋 ) ) → ( 𝐴 𝐻 ( ( 𝑁𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) )
17 13 16 mpdan ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐻 ( ( 𝑁𝑈 ) 𝐺 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) )
18 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
19 1 3 4 18 rngoaddneg2 ( ( 𝑅 ∈ RingOps ∧ 𝑈𝑋 ) → ( ( 𝑁𝑈 ) 𝐺 𝑈 ) = ( GId ‘ 𝐺 ) )
20 8 19 mpdan ( 𝑅 ∈ RingOps → ( ( 𝑁𝑈 ) 𝐺 𝑈 ) = ( GId ‘ 𝐺 ) )
21 20 adantr ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑁𝑈 ) 𝐺 𝑈 ) = ( GId ‘ 𝐺 ) )
22 21 oveq2d ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐻 ( ( 𝑁𝑈 ) 𝐺 𝑈 ) ) = ( 𝐴 𝐻 ( GId ‘ 𝐺 ) ) )
23 18 3 1 2 rngorz ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐻 ( GId ‘ 𝐺 ) ) = ( GId ‘ 𝐺 ) )
24 22 23 eqtrd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐻 ( ( 𝑁𝑈 ) 𝐺 𝑈 ) ) = ( GId ‘ 𝐺 ) )
25 2 7 5 rngoridm ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐻 𝑈 ) = 𝐴 )
26 25 oveq2d ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 ( 𝐴 𝐻 𝑈 ) ) = ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 𝐴 ) )
27 17 24 26 3eqtr3rd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) )
28 1 2 3 rngocl ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ( 𝑁𝑈 ) ∈ 𝑋 ) → ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ∈ 𝑋 )
29 11 28 mpd3an3 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ∈ 𝑋 )
30 1 rngogrpo ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp )
31 3 18 4 grpoinvid2 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ∈ 𝑋 ) → ( ( 𝑁𝐴 ) = ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ↔ ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) )
32 30 31 syl3an1 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ∈ 𝑋 ) → ( ( 𝑁𝐴 ) = ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ↔ ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) )
33 29 32 mpd3an3 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) = ( 𝐴 𝐻 ( 𝑁𝑈 ) ) ↔ ( ( 𝐴 𝐻 ( 𝑁𝑈 ) ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) )
34 27 33 mpbird ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) = ( 𝐴 𝐻 ( 𝑁𝑈 ) ) )