| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringnegmul.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | ringnegmul.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | ringnegmul.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | ringnegmul.4 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 5 | 1 | rneqi | ⊢ ran  𝐺  =  ran  ( 1st  ‘ 𝑅 ) | 
						
							| 6 | 3 5 | eqtri | ⊢ 𝑋  =  ran  ( 1st  ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( GId ‘ 𝐻 )  =  ( GId ‘ 𝐻 ) | 
						
							| 8 | 6 2 7 | rngo1cl | ⊢ ( 𝑅  ∈  RingOps  →  ( GId ‘ 𝐻 )  ∈  𝑋 ) | 
						
							| 9 | 1 3 4 | rngonegcl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( GId ‘ 𝐻 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( GId ‘ 𝐻 ) )  ∈  𝑋 ) | 
						
							| 10 | 8 9 | mpdan | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑁 ‘ ( GId ‘ 𝐻 ) )  ∈  𝑋 ) | 
						
							| 11 | 1 2 3 | rngoass | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( 𝑁 ‘ ( GId ‘ 𝐻 ) )  ∈  𝑋 ) )  →  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) | 
						
							| 12 | 11 | 3exp2 | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝐴  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( ( 𝑁 ‘ ( GId ‘ 𝐻 ) )  ∈  𝑋  →  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) ) | 
						
							| 13 | 12 | com24 | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝑁 ‘ ( GId ‘ 𝐻 ) )  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) ) | 
						
							| 14 | 13 | com34 | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝑁 ‘ ( GId ‘ 𝐻 ) )  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) ) | 
						
							| 15 | 10 14 | mpd | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝐴  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) | 
						
							| 16 | 15 | 3imp | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) | 
						
							| 17 | 1 2 3 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐻 𝐵 )  ∈  𝑋 ) | 
						
							| 18 | 17 | 3expb | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐻 𝐵 )  ∈  𝑋 ) | 
						
							| 19 | 1 2 3 4 7 | rngonegmn1r | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴 𝐻 𝐵 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) | 
						
							| 20 | 18 19 | syldan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) | 
						
							| 21 | 20 | 3impb | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) )  =  ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) | 
						
							| 22 | 1 2 3 4 7 | rngonegmn1r | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐵 )  =  ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) | 
						
							| 23 | 22 | 3adant2 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐵 )  =  ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐻 ( 𝑁 ‘ 𝐵 ) )  =  ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) | 
						
							| 25 | 16 21 24 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) )  =  ( 𝐴 𝐻 ( 𝑁 ‘ 𝐵 ) ) ) |