Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jeff Madsen Rings rngosm  
				
		 
		
			
		 
		Description:   Functionality of the multiplication operation of a ring.  (Contributed by Steve Rodriguez , 9-Sep-2007)   (Revised by Mario Carneiro , 21-Dec-2013)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ringi.1 ⊢  𝐺   =  ( 1st   ‘ 𝑅  )  
					
						ringi.2 ⊢  𝐻   =  ( 2nd   ‘ 𝑅  )  
					
						ringi.3 ⊢  𝑋   =  ran  𝐺   
				
					Assertion 
					rngosm ⊢   ( 𝑅   ∈  RingOps  →  𝐻  : ( 𝑋   ×  𝑋  ) ⟶ 𝑋  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ringi.1 ⊢  𝐺   =  ( 1st   ‘ 𝑅  )  
						
							2 
								
							 
							ringi.2 ⊢  𝐻   =  ( 2nd   ‘ 𝑅  )  
						
							3 
								
							 
							ringi.3 ⊢  𝑋   =  ran  𝐺   
						
							4 
								1  2  3 
							 
							rngoi ⊢  ( 𝑅   ∈  RingOps  →  ( ( 𝐺   ∈  AbelOp  ∧  𝐻  : ( 𝑋   ×  𝑋  ) ⟶ 𝑋  )  ∧  ( ∀ 𝑥   ∈  𝑋  ∀ 𝑦   ∈  𝑋  ∀ 𝑧   ∈  𝑋  ( ( ( 𝑥  𝐻  𝑦  ) 𝐻  𝑧  )  =  ( 𝑥  𝐻  ( 𝑦  𝐻  𝑧  ) )  ∧  ( 𝑥  𝐻  ( 𝑦  𝐺  𝑧  ) )  =  ( ( 𝑥  𝐻  𝑦  ) 𝐺  ( 𝑥  𝐻  𝑧  ) )  ∧  ( ( 𝑥  𝐺  𝑦  ) 𝐻  𝑧  )  =  ( ( 𝑥  𝐻  𝑧  ) 𝐺  ( 𝑦  𝐻  𝑧  ) ) )  ∧  ∃ 𝑥   ∈  𝑋  ∀ 𝑦   ∈  𝑋  ( ( 𝑥  𝐻  𝑦  )  =  𝑦   ∧  ( 𝑦  𝐻  𝑥  )  =  𝑦  ) ) ) )  
						
							5 
								4 
							 
							simpld ⊢  ( 𝑅   ∈  RingOps  →  ( 𝐺   ∈  AbelOp  ∧  𝐻  : ( 𝑋   ×  𝑋  ) ⟶ 𝑋  ) )  
						
							6 
								5 
							 
							simprd ⊢  ( 𝑅   ∈  RingOps  →  𝐻  : ( 𝑋   ×  𝑋  ) ⟶ 𝑋  )