Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Rings
rngosm
Metamath Proof Explorer
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez , 9-Sep-2007) (Revised by Mario Carneiro , 21-Dec-2013) (New usage is discouraged.)
Ref
Expression
Hypotheses
ringi.1
⊢ 𝐺 = ( 1st ‘ 𝑅 )
ringi.2
⊢ 𝐻 = ( 2nd ‘ 𝑅 )
ringi.3
⊢ 𝑋 = ran 𝐺
Assertion
rngosm
⊢ ( 𝑅 ∈ RingOps → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
Proof
Step
Hyp
Ref
Expression
1
ringi.1
⊢ 𝐺 = ( 1st ‘ 𝑅 )
2
ringi.2
⊢ 𝐻 = ( 2nd ‘ 𝑅 )
3
ringi.3
⊢ 𝑋 = ran 𝐺
4
1 2 3
rngoi
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) )
5
4
simpld
⊢ ( 𝑅 ∈ RingOps → ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) )
6
5
simprd
⊢ ( 𝑅 ∈ RingOps → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )