Description: Obsolete as of 25-Jan-2020. Use rngen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | on1el3.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
on1el3.2 | ⊢ 𝑋 = ran 𝐺 | ||
Assertion | rngosn4 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 ≈ 1o ↔ 𝑅 = 〈 { 〈 〈 𝐴 , 𝐴 〉 , 𝐴 〉 } , { 〈 〈 𝐴 , 𝐴 〉 , 𝐴 〉 } 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on1el3.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
2 | on1el3.2 | ⊢ 𝑋 = ran 𝐺 | |
3 | en1eqsnbi | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑋 ≈ 1o ↔ 𝑋 = { 𝐴 } ) ) | |
4 | 3 | adantl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 ≈ 1o ↔ 𝑋 = { 𝐴 } ) ) |
5 | 1 2 | rngosn3 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 = { 𝐴 } ↔ 𝑅 = 〈 { 〈 〈 𝐴 , 𝐴 〉 , 𝐴 〉 } , { 〈 〈 𝐴 , 𝐴 〉 , 𝐴 〉 } 〉 ) ) |
6 | 4 5 | bitrd | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 ≈ 1o ↔ 𝑅 = 〈 { 〈 〈 𝐴 , 𝐴 〉 , 𝐴 〉 } , { 〈 〈 𝐴 , 𝐴 〉 , 𝐴 〉 } 〉 ) ) |