Metamath Proof Explorer


Theorem rngosn4

Description: Obsolete as of 25-Jan-2020. Use rngen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses on1el3.1 𝐺 = ( 1st𝑅 )
on1el3.2 𝑋 = ran 𝐺
Assertion rngosn4 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑋 ≈ 1o𝑅 = ⟨ { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , 𝐴 ⟩ } , { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , 𝐴 ⟩ } ⟩ ) )

Proof

Step Hyp Ref Expression
1 on1el3.1 𝐺 = ( 1st𝑅 )
2 on1el3.2 𝑋 = ran 𝐺
3 en1eqsnbi ( 𝐴𝑋 → ( 𝑋 ≈ 1o𝑋 = { 𝐴 } ) )
4 3 adantl ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑋 ≈ 1o𝑋 = { 𝐴 } ) )
5 1 2 rngosn3 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑋 = { 𝐴 } ↔ 𝑅 = ⟨ { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , 𝐴 ⟩ } , { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , 𝐴 ⟩ } ⟩ ) )
6 4 5 bitrd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑋 ≈ 1o𝑅 = ⟨ { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , 𝐴 ⟩ } , { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , 𝐴 ⟩ } ⟩ ) )